Terms and conditions

Disclaimer

This scheme document is the property of Sweden Green Building Council (SGBC), based upon a licence from BRE Global Limited and contains Intellectual Property from BRE Global as described below. The document is made publicly available for information purposes only. Any testing, assessment, certification or approval activity related to this scheme document must be conducted in accordance with SGBC’s approved processes, and such activity may only be undertaken by authorised employees, agents, and associates of the Sweden Green Building Council, or Approved Parties. Any party wishing to use or reproduce this scheme document to offer testing, assessment, certification or approval must apply to SGBC for training, assessment and an associated licence, in order to qualify as an Approved Party; a fee will normally be charged. SGBC will not unreasonably refuse such applications. SGBC accepts no responsibility for any unauthorised use or distribution by others of this scheme document and may take legal action to prevent such unauthorised use or distribution.

Intellectual Property Rights

All intellectual property rights, including copyright, in the BREEAM International NC Technical Manual are the property of BRE Global Limited (BRE). The Swedish Green Building Council (SGBC), under licence from BRE, has made amendments and adaptations to the BREEAM International NC Technical Manual for the Swedish market, to ensure its relevance in Sweden. Intellectual property rights in any amendments and adaptations to the BREEAM International NC Technical Manual made by SGBC are owned by SGBC. This position applies unless otherwise expressly stated within this document.

The information and images contained in this document may be downloaded and printed for non-commercial purposes without requiring specific permission, so long as there is correct citing of BRE and/or SGBC’s copyright, intellectual property rights and authorship. Any downloading or printing does not confer transfer of ownership of the intellectual property, technical know-how and copyrighted in any material downloaded or printed. The information and images contained in this document may only be used for commercial purposes under a specific licence from BRE and SGBC. BRE makes no representation or warranty as to the accuracy or the usefulness of any amendments/adaptations made to this document for any purpose by SGBC.

Trademarks

“BRE”, “BREEAM”, “Green Guide” and “Green Book Live” and the BREEAM logo are trademarks, whether registered or unregistered, owned or licensed by BRE Group Limited or its subsidiaries. These trademarks must not be used without express written permission from the relevant BRE Group entity and a suitable licence for use has been obtained.

Acknowledgements

BREEAM-SE New Construction v6.0 has been made possible through the continued efforts of staff members of SGBC and representatives from the building industry. 5 consultants, SGBC’s material group, BREEAM-SE Operative- and Technical advisory group have supported in the work with the new manual. 32 stakeholders responded to our open consultations. Sweden Green Building Council also extends its gratitude to BRE Global who has reviewed and approved the technical manual, but also to those who support BREEAM-SE by continuing to specify and apply the method and contribute towards a sustainable built environment.

Uncontrolled copy if printed.
Valid on day of printing only
Copyright © 2023 SGBC and BRE Global.
Version: 6.0.1, published 2023-03-09. All rights reserved. Front page photography: Hangar 5 in Bromma, NCC.
Photo: WI Landskap.
Table of Contents

Terms and conditions ... 3
About Sweden Green Building Council 8
About BRE Global Limited .. 8
About this Scheme Document .. 9

1.0 Introduction to BREEAM .. 10

2.0 Scope of the BREEAM-SE
New Construction v6.0 scheme version 19
Building life cycle stages covered ... 23

3.0 Scoring and rating BREEAM-SE assessed buildings .. 25
BREEAM-SE assessment issues and credits .. 27
Calculating a building’s BREEAM-SE rating 29
Alignment with the EU taxonomy ... 30

4.0 The BREEAM-SE evidential requirements ... 34

5.0 Management ... 39
 Man 01 Project brief and design ... 40
 Man 02 Life cycle cost and service life planning 48
 Man 03 Responsible construction practices 53
 Man 04 Commissioning and handover 62
 Man 05 Aftercare ... 71
 Man 06 Moisture safety .. 77

6.0 Health and wellbeing ... 81
 Hea 01 Visual comfort ... 82
 Hea 02 Indoor air quality ... 96
 Hea 03 Safe containment in laboratories 110
 Hea 04 Thermal comfort ... 113
 Hea 05 Acoustic performance ... 121
 Hea 06 Accessibility ... 124
 Hea 08 Outdoor space .. 129
 Hea 09 Microbial contamination .. 131
 Hea 10 Radon ... 133

7.0 Energy .. 136
 Ene 01 Reduction of energy use .. 137
 Ene 02a Energy monitoring .. 144
 Ene 02b Energy monitoring .. 149
 Ene 03 Energy efficient lighting .. 152
 Ene 04 Low carbon design .. 156
 Ene 05 Energy efficient cold storage 165
 Ene 06 Energy efficient transport systems 171
 Ene 07 Energy efficient laboratory systems 175
 Ene 08 Energy efficient equipment 181
 Ene 10 Energy load management .. 186

8.0 Transport .. 189
 Tra 01 Public transport accessibility 190
 Tra 02 Proximity to amenities ... 197
 Tra 03a Alternative modes of transport 201
 Tra 03b Alternative modes of transport 210
 Tra 04 Maximum car parking capacity 215
 Tra 05 Travel plan ... 219
 Tra 06 Home office ... 222

9.0 Water .. 224
 Wat 01 Water efficiency ... 225
 Wat 02 Water monitoring ... 231
 Wat 03 Water leak detection and prevention 234
 Wat 04 Water efficient equipment 238

10.0 Materials ... 241
 Mat 01 Building climate impact .. 242
 Mat 03 Responsible sourcing of construction products 249
 Mat 05 Designing for durability and resilience 257
 Mat 06 Material efficiency .. 262
 Mat 07 Hazardous substances .. 266

11.0 Waste ... 271
 Wst 01 Construction waste management 272
 Wst 02 Recycled aggregates .. 277
 Wst 03a Operational waste ... 281
 Wst 03b Operational waste ... 287
 Wst 04 Speculative finishes .. 292
Wst 05 Adaptation to climate change .. 294
Wst 06 Functional adaptability .. 297

12.0 Land use and ecology .. 301
 LE 01 Site selection .. 302
 LE 02 Ecological value of site and protection of ecological features .. 307
 LE 04 Enhancing site ecology .. 314
 LE 05 Long term impact on biodiversity .. 318

13.0 Pollution .. 324
 Pol 01 Impact of refrigerants .. 325
 Pol 02 NO$_x$ emissions .. 334
 Pol 03 Surface water run-off .. 340
 Pol 04 Reduction of night time light pollution .. 357
 Pol 05 Reduction of noise pollution .. 361

14.0 Innovation .. 365
 Inn 01 Innovation .. 366

15.0 Appendices .. 369
 Appendix A – Scope and education buildings .. 370
 Appendix B – Scope and residential institutions .. 371
 Appendix C – Shell and core project assessments .. 372
 Appendix D – Single and multiple dwellings, partially and fully fitted .. 375
 Appendix E – Part new-build, part refurbishment projects .. 378

16.0 Checklists .. 379
 Checklist A1 .. 380
 Checklist A2 .. 386
 Checklist A3 .. 389
 Checklist A7 .. 390
List of Tables

Table 1:	BREEAM-SE New Construction v6.0 environmental sections and assessment issues	13
Table 2:	List of building types covered under BREEAM-SE New Construction v6.0	19
Table 3:	BREEAM-SE rating benchmarks	25
Table 4:	Minimum BREEAM-SE standards by rating level	26
Table 5:	Example BREEAM-SE section weightings for common project types	27
Table 6:	Example BREEAM-SE score and rating calculation	29
Table 7:	Minimum standards for a BREEAM-SE Very Good rating	30
Table 8:	Criteria in the EU taxonomy aligned with BREEAM issues	31
Table 9:	BREEAM-SE Evidence principles	37
Table 10:	Checklist of actions to minimise air and water pollution during construction works	56
Table 11:	Values of Target daylight factor (D_t) and Minimum target daylight factors (D_{tm}) respectively	83
Table 12:	Minimum Viewing angle, distance to view and layer requirements	85
Table 13:	Internal and external lighting – building specific	86
Table 14:	Emission criteria by product type	99
Table 15:	Exemplary level emission criteria by product type	100
Table 16:	Maximum TVOC content for paints and coatings	101
Table 17:	List of some of the approved Schemes	102
Table 18:	Ene 01 – Percentage improvement and credits awarded	137
Table 19:	Best practice energy efficient measures in laboratories	176
Table 20:	Examples of solutions deemed to comply with the criteria for the reduction of equipment energy load from significantly contributing systems	181
Table 21:	Credits available for each building type relating to the public transport Accessibility Index (AI) score	191
Table 22:	Default hours of operation by building type for a typical day	196
Table 23:	Credits available for Tra 02 for different building types	197
Table 24:	Cycle storage criteria for each building type	202
Table 25:	Number of cycle spaces per dwelling and number of credits available	211
Table 26:	Electric vehicle charging stations as a percentage of total car parking spaces	211
Table 27:	Credits available in Tra 04 Maximum car parking capacity for different building types	215
Table 28:	Default occupancy rates by building type	218
Table 29**:	BREEAM-SE credits available for use of water efficient components	226
Table 30:	BREEAM-SE credits available for use of water efficient appliances	226
Table 31:	The appropriate data (for each component type) that will need to be collected from manufacturers’ product information to complete the assessment	226
Table 32:	Percentage of improvement and awarding of credits	243
Table 33:	Reference values for climate impact	244
Table 34:	Credits available for each building type	244
Table 35:	Service life of components, from EU Level(s) (translated into Swedish components) for Life Cycle Analysis	244
Table 36:	The number of BREEAM-SE credits achieved is determined as follows	249
Table 37:	Scope assessment, common building elements	253
Table 38:	Material categories	253
Table 39:	Applicable building elements, environmental factors and material degradation effects to consider	258
Table 40: Examples of material efficiency consideration at each work stage.............. 264
Table 41: List of building elements to check and document .. 267
Table 42: List of phase-out substances as defined by the Swedish Chemicals Agency (Kemikalieinspektionen, KEMI) .. 267
Table 43: List of installation products to control and document 268
Table 44: BREEAM-SE targets for recycling diversion from landfill 273
Table 45: Physical climate risks 295
Table 46: Percentage of proposed development’s footprint on previously developed land 302
Table 47: BREEAM-SE checklist for defining land of low ecological value 308
Table 48: Percentage of recommendations within ecology report implemented (see Methodology) .. 314
Table 49: BREEAM-SE credits achieved per number of additional measures 318
Table 50: BREEAM-SE credits achieved per number of applicable additional measures .. 319
Table 51: Additional measures for the improvement of long-term biodiversity 319
Table 52: Default system operational design life values .. 328
Table 53: Average annual leakage rates .. 328
Table 54: List of some common refrigerant types with low GWP 331
Table 55: Ozone depleting potential of refrigerants ... 332
Table 56: BREEAM-SE credits achieved for NOx Emission levels 334
Table 57: BREEAM-SE credits achieved for NOx Emission levels in Industrial buildings .. 334
Table 58: Excess oxygen conversion factors .. 339
Table 59: Recommendations for maximum luminance (CD/m²) 358
Table 60: Environmental lighting zone ... 358
Table 61: Distribution between the original building and the new building when alternative 4 is used .. 378
Table 62: Checklist A1 – Safe and adequate access requirements 380
Table 63: Checklist A1 – Good neighbour requirements ... 381
Table 64: Checklist A1 – Environmentally aware requirements 383
Table 65: Checklist A1 – Safe and considerate working environment requirements 384
Table 66: Checklist A2 – Home user guide requirements .. 386
Table 67: Checklist A3 – Access strategy checklist .. 389
Table 68: Checklist A7-1 – Likelihood of significant contamination on site 390
Table 69: Checklist A7-2 – Scope of site investigation, risk assessment and appraisal report .. 390
Table 70: Checklist A7-3 – Previous site uses which can cause significant contamination 392
About Sweden Green Building Council

Sweden Green Building Council (SGBC) was established in 2009 and is Sweden’s leading member organization for sustainable building. SGBC is a non-profit organisation that is open to all companies and organisation within the Swedish construction and real estate sector, as well as municipalities, regions and other public operators. The members represent the whole building sector – which is one of SGBC’s main strengths. Through certification, education and advocacy we work for a community that benefits both people and the environment. With us we have experts, companies and organizations from the whole country who all work towards the same goal. Read more about what SGBC do, the different certification systems, courses and events on www.sgbc.se.

BRE Global Ltd has licensed SGBC as the National Scheme Operator of BREEAM in Sweden.

About BRE Global Limited

BRE Global Limited (part of the BRE (Building Research Establishment) Group) is an independent third-party approvals body offering certification of fire, security and sustainability products and services to an international market.

BRE Global Limited’s mission is to ‘Protect People, Property and the Planet’. BRE aims to achieve this by:

1. researching and writing standards.
2. testing and certification in the areas of fire, electronics, security and sustainability.
3. developing world-leading sustainability assessment methods.
4. undertaking research and consultancy for clients and regulators.
5. promulgating standards and knowledge throughout the industry through publications and events.
6. developing and delivering training.

BRE Global Limited’s product testing and approvals are carried out by recognised experts in our world-renowned testing laboratories.

BRE Global Limited is custodian of a number of world-leading brands including:

1. Building Research Establishment’s Environmental Assessment Method (BREEAM) - the world’s leading environmental assessment method for buildings
2. Loss Prevention Certification Board (LPCB) for approval of fire and security products and services.

BRE Global Limited is a trading subsidiary of the BRE Trust, the registered research and education charity which owns the BRE Group.
About this Scheme Document

This document is the technical manual for the BREEAM-SE New Construction v6.0 Scheme, based on BREEAM International New Construction v6.0. It describes an environmental performance standard against which new buildings in Sweden can be assessed and achieve a BREEAM-SE New Construction rating.

The scheme document and the information detailed within is intended for use by trained, qualified and licensed BREEAM-SE Assessors in accordance with the procedural and operational requirements of BREEAM-SE (as described in the SGBC BR 004 Operations Manual) under the terms and conditions of a BREEAM-SE licence. This document should be used by non-BREEAM-SE Assessors for reference purposes only.

Changes to this BREEAM-SE scheme document

This scheme document is subject to revision and can be reissued from time to time by SGBC. A schedule of the publication date for each issue of this document is provided below.

Any additions to this document that necessitate its reissue will be highlighted throughout the text (note: deletions are not identified in the updated issue).

A detailed list of all additions and deletions made to each issue is available separately. BREEAM-SE assessors can download a list of changes from the SGBC SharePoint site for assessors and AP’s as well as on the SGBC website (www.sgbc.se).

<table>
<thead>
<tr>
<th>Scheme document</th>
<th>Date of issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREEAM-SE v6.0</td>
<td>2023-03-09</td>
</tr>
</tbody>
</table>
1.0 Introduction to BREEAM

BREEAM (Building Research Establishments’ Environmental Assessment Method) is the world’s first sustainability rating scheme for the built environment and has contributed much to the strong focus in the UK on sustainability in building design, construction and use. BREEAM is now an international standard that is locally adapted, operated and applied through a network of international operators, assessors and industry professionals. Through its application and use, BREEAM helps clients measure and reduce the environmental impacts of their buildings and in doing so create higher value, lower risk assets.

To date, BREEAM has been used to certify over 600,000 building assessments across the building life cycle and it is being applied in over 90 countries.

Aims of BREEAM

- To mitigate the life cycle impacts of buildings on the environment.
- To enable buildings to be recognised according to their environmental benefits.
- To provide a credible, environmental label for buildings.
- To stimulate demand and create value for sustainable buildings, building products and supply chains.

Objectives of BREEAM

- To provide market recognition of buildings with a low environmental impact
- To ensure best environmental practice is incorporated in the planning, design, construction and operation of buildings and the wider built environment
- To define a robust, cost-effective performance standard surpassing that required by regulations
- To challenge the market to provide innovative, cost-effective solutions that minimise the environmental impact of buildings
- To raise awareness among owners, occupants, designers and operators of the benefits and value of buildings with a reduced life cycle impact on the environment
- To allow organisations to demonstrate progress towards corporate environmental objectives.

BREEAM is developed and operated to meet the following underlying principles:

- Ensure environmental quality through an accessible, holistic and balanced measure of environmental impacts. Use quantified measures for determining environmental quality.
- Adopt a flexible approach that encourages and rewards positive outcomes, avoiding prescribed solutions. Use robust science and best practice as the basis for quantifying and calibrating a cost effective and rigorous performance standard for defining environmental quality.
- Reflect the social and economic benefits of meeting the environmental objectives covered.
- Provide a common international framework of assessment that is tailored to meet the ‘local’ context including regulation, climate and sector.
- Integrate building professionals in the development and operational processes to ensure wide understanding and accessibility.
• Adopt third party certification to ensure independence, credibility and consistency of the label.
• Adopt existing industry tools, practices and other standards wherever possible to support developments in policy and technology, build on existing skills and understanding, and minimise costs.
• Align technically and operationally with relevant international standards, including the suite of standards on the ‘Sustainability of Construction Works’ prepared by the European Committee for Standardisation Technical Committee CEN/TC 350.
• Engage with a representative range of stakeholders to inform ongoing development in accordance with the underlying principles and the pace of change in performance standards (accounting for policy, regulation and market capability).

The aims, objectives and principles of BREEAM are embodied within a Core Technical Standard and applied through a suite of BREEAM schemes covering different aspects of the built environment life cycle. These schemes are locally developed and operated by a number of different organisations, called National Scheme Operators (NSOs), across a range of countries. Sweden Green Building Council the National Scheme Operator in Sweden.

For a full list of BREEAM NSOs and Schemes visit: www.breeam.com.

The BREEAM Schemes

BRE Global Limited is the NSO of BREEAM in the UK. BRE Global Limited develops and operates a number of BREEAM Schemes for the UK and internationally, each designed to assess the environmental performance of buildings at various stages in the life cycle, and these include:

• BREEAM Infrastructure for new infrastructure projects
• BREEAM Communities for the master-planning of a larger community of buildings
• BREEAM New Construction for new-build non-domestic buildings
• Home Quality Mark for new-build domestic buildings (UK only)
• BREEAM In-Use for existing buildings in-use
• BREEAM Refurbishment and fit-out for domestic (UK only) and non-domestic building fit-outs and refurbishments.

Sweden Green Building Council is the National Scheme Operator for BREEAM in Sweden. As such, SGBC operates the locally adapted BREEAM scheme BREEAM-SE, as well as BREEAM-SE Bespoke for refurbishment projects and new constructions other than those specified in BREEAM-SE.

Independent BREEAM-SE Assessors, trained, qualified and licensed by SGBC can undertake a BREEAM-SE assessment using this scheme document and associated reporting and calculation tools.

Once an assessment is complete and quality assured SGBC will issue a BREEAM-SE certificate. The BREEAM-SE certificate provides formal that the Assessor has completed an assessment of a building in accordance with the requirements of the scheme and its quality standards and procedures.

A BREEAM-SE certificate provides assurance to any interested party that a building’s BREEAM-SE rating, at the time of certification, accurately reflects its performance against the BREEAM-SE standard.
Anyone wishing to verify the BREEAM-SE rating of a building can do so by either checking its BREEAM-SE certificate, which will contain the certification mark, (see below) or by searching the BREEAM-SE buildings listings on: http://www.greenbooklive.com/search/scheme.jsp?id=202.

Ensuring quality and consistency

All BREEAM Schemes are developed and operated by NSOs in accordance with the Code for a Sustainable Built Environment. The Code for a Sustainable Built Environment is a set of strategic principles and requirements which define an integrated approach to the design, management, evaluation and certification of the environmental, social and economic impacts of the built environment.

The Code is interpreted through the BREEAM Core Process and Technical Standards. These linked documents set out the requirements that a compliant scheme must meet in order to be affiliated with the Code. The Standards ensure that a common scientific and performance basis is used by all compliant schemes operated by NSOs, while ensuring that these are relevant to local demands, standards and practices.

The Code and associated standards are developed and maintained by BRE Global Limited with direction from the BREEAM Strategy Board, under the auspices of the BRE Global Governing Board.

To ensure competence, impartiality and performance capability, all NSOs are required to maintain scheme operations to internationally agreed standards and seek accreditation from a national accreditation body.

BRE Global Limited is a United Kingdom Accreditation Service (UKAS) accredited certification body (No. 0007). The scope of BRE’s accreditation to ISO/IEC 17065 ‘Conformity assessment – Requirements for bodies certifying products, processes and services’ can be verified on the UKAS website and includes BREEAM Scheme SD123 ‘Environmental assessments of the built environment – certification of the process’.

BRE Global Ltd is also certified to ISO 9001 ‘Quality management systems – Requirements’ for all its BREEAM related activities. SGBC has implemented a quality management system which fulfils the requirements of ISO 9001.

SGBC maintains an open and accountable governance structure. The operation of BREEAM-SE is overseen by an independent Governing Body (Certifieringsnämnden) and a Standing Panel for Peer & Market Review (BREEAM:s operativa råd).

The Governing Body represents stakeholder interests to ensure, among other things, that we at SGBC are acting independently and impartially, operating our processes correctly, and treating our customers fairly.

The Standing Panel’s primary function is to support SGBC’s BREEAM Manager and CEO in the continual development of BREEAM-SE. The Standing Panel constitutes the main link between SGBC and the market by providing support in market-related issues and offering insight into market development.
BREEAM-SE New Construction v6.0

The BREEAM-SE New Construction v6.0 scheme is a performance based assessment method and certification scheme for new buildings.

The primary aim of BREEAM-SE New Construction v6.0 is to mitigate the life cycle impacts of new buildings on the environment in a robust and cost-effective manner. This is achieved through integration and use of the scheme by clients and their project teams at key stages in the design and construction process.

This enables the client, through the BREEAM-SE Assessor and the SGBC certification process, to measure, evaluate and reflect the performance of their new building against best practice in an independent and robust manner.

This performance is quantified by a number of individual measures and associated criteria stretching across a range of environmental issues, see Table 1, which is ultimately expressed as a single certified BREEAM-SE rating, i.e., the label (section 3 describes how a BREEAM-SE rating is calculated).

Table 1: BREEAM-SE New Construction v6.0 environmental sections and assessment issues

<table>
<thead>
<tr>
<th>Management</th>
<th>Health and wellbeing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project brief and design</td>
<td>Visual comfort</td>
</tr>
<tr>
<td>Life cycle cost and service life planning</td>
<td>Indoor air quality</td>
</tr>
<tr>
<td>Responsible construction practices</td>
<td>Safe containment in laboratories</td>
</tr>
<tr>
<td>Commissioning and handover</td>
<td>Thermal comfort</td>
</tr>
<tr>
<td>Aftercare</td>
<td>Acoustic performance</td>
</tr>
<tr>
<td>Moisture safety</td>
<td>Accessibility Hazards</td>
</tr>
<tr>
<td></td>
<td>Outdoor space</td>
</tr>
<tr>
<td></td>
<td>Microbial contamination</td>
</tr>
<tr>
<td></td>
<td>Radon</td>
</tr>
<tr>
<td>Energy</td>
<td>Transport</td>
</tr>
<tr>
<td>Reduction of energy use</td>
<td>Public transport accessibility</td>
</tr>
<tr>
<td>Energy monitoring</td>
<td>Proximity to amenities</td>
</tr>
<tr>
<td>Energy efficient lighting</td>
<td>Alternative modes of transport</td>
</tr>
<tr>
<td>Low carbon design</td>
<td>Maximum car parking capacity</td>
</tr>
<tr>
<td>Energy efficient cold storage</td>
<td>Travel plan</td>
</tr>
<tr>
<td>Energy efficient transport systems</td>
<td>Home office</td>
</tr>
<tr>
<td>Energy efficient laboratory systems</td>
<td></td>
</tr>
<tr>
<td>Energy efficient equipment</td>
<td></td>
</tr>
<tr>
<td>Energy Load Management</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>Materials</td>
</tr>
<tr>
<td>Water efficiency</td>
<td>Building climate impact</td>
</tr>
<tr>
<td>Water monitoring</td>
<td>Responsible sourcing of materials</td>
</tr>
<tr>
<td>Water leak detection</td>
<td>Designing for durability and resilience</td>
</tr>
<tr>
<td>Water efficient equipment</td>
<td>Material efficiency</td>
</tr>
<tr>
<td></td>
<td>Hazardous substances</td>
</tr>
</tbody>
</table>
When and how to engage with the BREEAM-SE New Construction scheme

Timing the engagement with and use of the BREEAM-SE New Construction scheme via the BREEAM-SE Assessor is essential for ensuring seamless integration of the methodology in the new-build procurement process. Without this, the ability to optimise cost-effectively the building’s environmental performance and achieve the desired BREEAM-SE rating will be compromised.

Appointing a BREEAM-SE Assessor and Advisory Professional (AP) early in the project will help in achieving the target rating without undue impacts on the flexibility of design decisions, budgets and potential solutions.

Figure 1 serves to highlight the link between the BREEAM-SE v6.0 assessment and certification stages and the Swedish construction stages. This figure can assist clients in timing their engagement with BREEAM-SE and the appointment of a BREEAM-SE Assessor.

Clients can view up-to-date listings of licensed BREEAM-SE New Construction Assessors and BREEAM-SE Advisory Professionals on SGBC’s webpage: www.sgbc.se.

It is important to recognise that BREEAM-SE primarily reflects the overall performance of the building rather than just the opportunities or limitations placed on specific stakeholders involved in the procurement process. This means that the client, design team, principal contractor and BREEAM-SE Assessor, as well as other specialist disciplines, have an important role to play throughout the procurement process, if the desired performance level is to be achieved and reflected through the certified BREEAM-SE rating.

The onus of orientating the brief towards sustainability needs to come first and foremost from the client. To facilitate this, SGBC recommends that clients and their project teams engage with a BREEAM-SE Assessor and/or BREEAM-SE AP in accordance with the table below. This will ensure that realistic targets are set and can be met, appropriate responsibilities can be defined and understood, and low or no cost solutions to environmental impacts can be sought and applied wherever possible.
Figure 1: BREEAM-SE assessment and certification stages and processes for Swedish building projects

<table>
<thead>
<tr>
<th>Project stage</th>
<th>BREEAM-SE main stages</th>
<th>BREEAM Assessor and AP</th>
<th>Certification</th>
</tr>
</thead>
</table>
| Strategic definition, preparation and brief | Certification decision
- Engage Assessor
- Engage AP
- Register project | Pre-assessment | Registration |
| Concept design stage* | Analysis of opportunities
- The project’s specific conditions
- Legal requirements
- Early investigations | Supervise, support and document | Preliminary certificate |
| Development design stage | Development of evidence
Documentation of design stage | Compile evidence | Final certificate |
| Technical and specialist design stage | Development of evidence
Documentation of finished building | Write report
DS-application | |
| Construction stage | | Supervise, support and document | |
| Use and aftercare | | Compile evidence | |
| | | Write report
PS-application | |

* Prior to any significant design or building services decisions.
How to use the BREEAM-SE New Construction Scheme

This BREEAM-SE scheme document is a technical document which has been created to:

1. enable qualified and licensed BREEAM-SE Assessors to complete BREEAM-SE assessments and determine a rating.
2. enable SGBC to complete quality assurance reviews of a BREEAM-SE Assessor’s assessment report
3. act as an aid for BREEAM-SE AP to undertake project team facilitation, in terms of defining, monitoring and successfully achieving the desired BREEAM-SE rating.
4. act as a reference for clients and members of the project team whose proposed building is being assessed according to BREEAM-SE.

The scheme document is split into six parts:

1. Introduction to BREEAM
2. Scope of the BREEAM-SE New Construction v6.0 scheme version
3. BREEAM-SE rating benchmarks, including minimum standards
4. The BREEAM-SE evidential requirements
5. Assessment criteria

The Scope section describes the types of buildings and stages of assessment that this BREEAM-SE Scheme can be applied to. Appendices A to E provide additional scoping guidance for specific building and project types. The Scope section can be used by clients and BREEAM-SE Assessors to check whether this is the correct BREEAM-SE Scheme to use for their project.

The Scoring and rating section illustrates how a building’s assessed performance is measured and rated. It outlines the BREEAM-SE rating level benchmarks, the minimum BREEAM-SE standards for each rating level and the BREEAM-SE environmental section weightings. It also includes a description of the BREEAM-SE assessment issues and ‘credits’, including BREEAM-SE ‘exemplary credits’, and how performance against these, is calculated and expressed as a BREEAM-SE rating.

Please note that, for the purpose of formal assessment and certification, the building’s actual BREEAM-SE performance must be determined by the BREEAM-SE Assessor using the relevant BREEAM-SE reporting and calculation tools.

The BREEAM-SE evidential requirements section provides guidance to assessors and project teams on the various types and forms of evidence required by the BREEAM-SE Assessor to demonstrate compliance with BREEAM-SE criteria. This includes a description of why BREEAM-SE requires an auditable trail of evidence.

The Assessment criteria section includes the individual BREEAM-SE assessment issues, categorised in 10 environmental sections. Each issue defines a level of performance (the assessment criteria) against which the assessed building demonstrates compliance (using appropriate project information, i.e., evidence) in order to achieve a corresponding number of available BREEAM-SE credits.
The majority of BREEAM-SE issues and credits are tradable, meaning that a client and their project team can pick and choose which to target in order to build their BREEAM-SE performance score and achieve the desired BREEAM-SE rating. Several BREEAM-SE issues have minimum standards, meaning that to achieve a particular BREEAM-SE rating, specific credits or criteria must be achieved (minimum standards are outlined in the Scoring and rating section).

For some BREEAM-SE issues there are prerequisites. These criteria’s must be fulfilled to be able to achieve credits on that issue. The prerequisites are only mandatory if credits on that issue is achieved.

Each BREEAM-SE issue is structured as follows:

1. **Issue information:** This contains the assessment issue reference, title, number of credits available and whether the issue forms part of BREEAM-SE’s minimum standards.

2. **Aim:** This outlines the broad objective of the issue and the impact it measures or mitigates.

3. **Assessment criteria:** This outlines the good and best practice performance level benchmarks and criteria. Where the building complies with the assessment criteria, as determined by the BREEAM-SE Assessor, the relevant number of BREEAM-SE credits can be awarded. Some issues have exemplary level criteria; where a building demonstrates that it meets exemplary level criteria, a BREEAM-SE exemplary credit can be awarded (refer to the 14.0 Innovation section for more details). A maximum of 10 innovation credits are available.

4. **Checklists and tables:** This section contains any checklists and tables referenced in the assessment criteria section. This can include tables of benchmarks or building type specific performance criteria.

5. **Compliance notes:** These notes provide additional guidance that supports the application and interpretation of the main assessment criteria, including how to assess compliance in a particular location or for a particular building or project type, e.g., shell only.

 In addition to what is stated in the manual, SGBC regularly publishes new compliance notes to the manual on the website www.sgbc.se. The interpretations and clarifications apply regardless of when the building was registered.

6. **Methodology:** This section includes a description of any methodology used to determine the number of BREEAM-SE credits achieved for a given level of building performance. It includes, for example, calculation procedures or guidance on how non-BREEAM-SE schemes, standards or qualifications referenced in the assessment criteria relate to those criteria.

7. **Evidence:** This section describes the types of project information that must be provided by the design team or client and given to the BREEAM-SE Assessor to enable verification of the building’s performance against the assessment criteria and so justify the award of the relevant number of BREEAM-SE credits. The BREEAM-SE evidential requirements section provides further guidance on evidential requirements.

8. **Additional information:** This section contains any further information relevant to the application of the assessment criteria, including any definition of terms used in the assessment issue or sources of additional information that may be of use in addressing the issue.

The Appendices provide supporting information relevant to either the scope of the BREEAM-SE New Construction v6.0 scheme or its assessment criteria.
Use of standards

The latest version of referenced standards should always be used. If not the same, also the standard version valid on the date of approval of the building permit could be used.

If a standard has been withdrawn and replaced with a different standard, (e.g., EN 13779:2007 is replaced by ISO 17772-1:2017) this new standard cannot automatically be used.

New standards cannot be proposed if they are easier to achieve than the BREEAM requirements. Only standards which are equivalent or more rigorous than the BREEAM default standards are considered. In order to use another standard than the referenced standard, it must be sent to SGBC as a Technical Query with a motivation from the project.
2.0 Scope of the BREEAM-SE New Construction v6.0 scheme version

The BREEAM-SE New Construction v. 6 scheme can be used to assess the environmental life cycle impacts of new buildings in Sweden at the design and construction stages. ‘New Construction’ is defined as development that results in a new standalone structure, or a new extension to an existing structure, which will come into operation or use for the first time upon completion of the works. Prior to the launch of a refurbishment scheme for buildings, BREEAM-SE may be used for refurbishment and fit out projects. For guidance, please see section Refurbishment projects. Please see section ‘Part new-build, part refurbishment project’ for information on how to handle the certification of projects that encompass both an existing building and a new construction.

Type of buildings that can be assessed using the BREEAM-SE New Construction v6.0 scheme version

The building types which can be assessed and rated using this scheme version are outlined in Table 2. Additional guidance for some of the building types listed is also provided in the appendices.

Table 2: List of building types covered under BREEAM-SE New Construction v6.0

<table>
<thead>
<tr>
<th>Sector</th>
<th>Building type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Residential</td>
<td>Single dwellings
Multiple dwellings</td>
</tr>
<tr>
<td>Commercial</td>
<td>Offices</td>
<td>General office buildings
Offices with research and development areas (category 1 laboratories only)</td>
</tr>
<tr>
<td>Industrial</td>
<td>Industrial unit – warehouse storage or distribution</td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td>Shop or shopping centre, retail park or warehouse
‘Over the counter’ service provider, e.g., financial, estate and employment agencies, and betting offices
Showroom
Restaurant, café and drinking establishment
Hot food takeaway</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>Preschool</td>
<td>Schools and colleges
Universities
Higher education institutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For further detail of scope, see also Appendix A – Scope and education buildings</td>
</tr>
</tbody>
</table>
2.0 Scope of the BREEAM-SE New Construction v6.0 scheme version

<table>
<thead>
<tr>
<th>Residential institutions</th>
<th>Long term stay</th>
<th>Residential care home</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sheltered accommodation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential college or school (halls of residence)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local authority secure residential accommodation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Military barracks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For further detail of scope, see also Appendix B – Scope and residential institutions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotels and Residential institutions</th>
<th>Short term stay</th>
<th>Hotel, hostel, boarding and guest house</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Secure training centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential training centre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-standard building types</th>
<th>Bespoke</th>
<th>Community or visitor centre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Town hall or civic centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conference facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theatre or concert hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sports or leisure facility (with or without a pool)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Library</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cinema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital and other healthcare facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Law court Police station</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire station</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transport hub (coach, bus or rail station)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gallery or museum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Place of worship</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research and development (category 2 or 3 laboratories - non-higher education)</td>
</tr>
</tbody>
</table>

Refurbishment projects

BREEAM-SE v6.0 New Construction only covers ‘new construction’ projects as defined above and is therefore not specifically designed to cater for the assessment of only refurbishment and fit-out projects.

There are three options available for the assessment of refurbishment and fit-out projects, as follows.

1. Refurbishment projects could be assessed and certified using BREEAM-SE v6.0 New Construction
2. Refurbishment or Fit-out projects could be assessed and certified using:
 a. BREEAM International Refurbishment and Fit-out
 b. BREEAM-SE v6.0 Bespoke

For BREEAM-SE v6.0 Bespoke, SGBC should be contacted. For BREEAM International Refurbishment and Fit-out, BRE should be contacted.
Part new-build, part refurbishment projects

BREEAM-SE New Construction v6.0 can be used to assess new build extensions to existing buildings. For developments that are a mixture of new-build and refurbished areas and/or fit-out, the choice of scheme depends on the scope of the new-build and refurbishment works. This is further described in Appendix E Part new-build, part refurbishment projects.

Mixed-use developments and building types

Developments which consist of a number of separate buildings of differing functional types, or a single building containing a number of different functions, e.g., office and retail or retail and residential, will require an assessment and therefore BREEAM-SE rating and certificate for each individual building or functional use within a single building.

This is necessary as BREEAM-SE defines differing criteria and benchmarks for some assessment issues according to building type, function and use. Therefore, to maintain comparability and consistency of the assessment and BREEAM-SE rating, a separate assessment score and rating are required for each building type, function or use in the development.

In rare cases exceptions to the rule can be made which allows different functions to be covered by the same assessment, rating and certificate. In these cases the assessor must consult SGBC for guidance and document the reasoning that led up to the final decision.

Further guidance on how to define mixed-use developments for the purpose of a BREEAM-SE assessment can be found in Guidance Note GN10 (Mixed-use developments and similar buildings (or units)), available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.

BREEAM-SE New Construction v6.0 assessment types

Within the BREEAM-SE New Construction v6.0 scheme a number of assessment types are defined and can be used to assess and rate a new building’s performance. These are:

Non-residential

- Fully fitted
- Shell and Core (see Appendix C – Shell and core project assessments)
- Shell only (see Appendix C – Shell and core project assessments)

Residential

- Fully fitted (see Appendix D – Applicability of BREEAM-SE New Construction to single and multiple dwellings, partially and fully fitted)
- Partially fitted (see Appendix D – Applicability of BREEAM-SE New Construction to single and multiple dwellings, partially and fully fitted).

The assessment criteria for these options are clearly identified in this technical manual. The assessor, in collaboration with the client and design team as necessary, should determine which BREEAM-SE assessment type is relevant for their project.
Similar building types (or units) on the same site

It is possible to assess and rate a number of separate but similar non-residential buildings, or individual units within a larger building development, within one BREEAM-SE assessment report. Further guidance on this type of assessment can be found in Guidance Note GN10 (Mixed use developments and similar buildings (or units)), available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.

Shell and core, speculative buildings

Non-fitted out ‘speculative’ new buildings, often referred to as shell and core buildings, can be assessed using the BREEAM-SE New Construction v6.0 scheme. Further details on the application of the scheme to these types of new building can be found in Appendix C – Shell and core project assessments.

Non-standard building types

If a building type requiring assessment is listed as a non-standard building in Scope of the BREEAM-SE New Construction v6.0 scheme version: Table 2 or is not listed at all, it can still be assessed using BREEAM-SE New Construction. Such building types will require the development of a set of bespoke assessment criteria to be used in conjunction with this New Construction scheme. In such instances BREEAM-SE Assessors and clients should contact SGBC for advice and information on how to proceed. Further details are given on SGBC’s webpage: www.sgbc.se
Building life cycle stages covered

This scheme can be used to assess and rate the environmental impacts arising from a newly constructed building development (including external site areas), at the following life cycle stages:

1. New build design stage (DS) - leading to an interim BREEAM-SE rating and certificate of assessment
2. New build post-construction stage (PCS) – leading to a final BREEAM-SE rating and certificate of assessment.

Design stage

The design stage (DS) assessment and interim BREEAM-SE rating confirms the proposed new building’s performance at the design stage of the life cycle. Assessment and ideally certification will occur prior to the beginning of operations on site. The BREEAM-SE rating at this stage is labelled as ‘interim’ because it does not represent the building’s final, new construction BREEAM-SE performance.

To complete an assessment at this stage, the design must be advanced to a point where the relevant design information is available to enable the BREEAM-SE Assessor to evaluate and verify the building’s performance against the criteria defined in this scheme document. The interim DS assessment will therefore be completed and certified at the scheme design or detailed design stages.

Post-construction stage

The post-construction stage (PCS) assessment and BREEAM-SE rating confirms the final as-built performance of the building at the new construction stage of the life cycle. A final PCS assessment is completed and certified after practical completion of the building works.

There are two approaches to assessment at the post-construction stage:

1. A post-construction review (PCR) based on a completed interim design stage assessment

A PCR serves to confirm that the building’s as-built performance and rating is in accordance with the assessment certified at the interim design stage. Where an interim DS assessment has not been carried out, i.e., certified, and a BREEAM-SE assessment and rating is required, a full post-construction stage assessment can be conducted.

Project stage requirements

Within BREEAM-SE v6.0, some criteria need to be fulfilled before a certain project stage, such as förstudie (Strategic definition & preparation and brief) and tidigt programhandlingsskedet (Concept design stage) et cetera. If the criteria have been met at a later stage than stated in the technical manual, a technical query must be sent to SGBC for approval.
Building life cycle stages not covered

The BREEAM-SE New Construction scheme is not designed for, and therefore not appropriate to assess, the environmental impacts of buildings at the following life cycle stages:

Infrastructure projects (refer to the BREEAM Infrastructure scheme)

Master planning projects (refer to the BREEAM Communities scheme)

Existing building refurbishment and fit-out (refer to the BREEAM International Refurbishment & Fit-Out scheme or apply for a BREEAM-SE Bespoke), see Refurbishment projects above. BREEAM-SE v6.0 New Construction may however also be used.

Existing building in operation or existing unoccupied building (refer to the BREEAM In-Use International scheme).
3.0 Scoring and rating BREEAM-SE assessed buildings

BREEAM-SE rating benchmarks

There are a number of elements that determine the overall performance of a project assessed using BREEAM-SE. These are as follows:

1. The scope of the assessment
2. The BREEAM-SE rating level benchmarks
3. The minimum BREEAM-SE standards
4. The environmental section weightings
5. The BREEAM-SE assessment issues and credits
6. How these elements combine to produce a BREEAM-SE rating for a project is summarised on the following pages. This is followed by a description and example describing the methodology for calculating a rating.
7. The BREEAM-SE rating benchmarks for projects assessed using the BREEAM-SE New Construction v6.0 scheme are as follows:

<table>
<thead>
<tr>
<th>BREEAM-SE Rating</th>
<th>% score</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTSTANDING</td>
<td>≥ 85</td>
</tr>
<tr>
<td>EXCELLENT</td>
<td>≥ 70</td>
</tr>
<tr>
<td>VERY GOOD</td>
<td>≥ 55</td>
</tr>
<tr>
<td>GOOD</td>
<td>≥ 45</td>
</tr>
<tr>
<td>PASS</td>
<td>≥ 30</td>
</tr>
<tr>
<td>UNCLASSIFIED</td>
<td>< 30</td>
</tr>
</tbody>
</table>

The BREEAM-SE rating benchmarks enable a client and all other stakeholders to compare the performance of a building with other BREEAM-SE rated buildings of the same type, and the typical sustainability performance of a stock of buildings.

An unclassified BREEAM-SE rating represents performance that is non-compliant with BREEAM-SE, in terms of failing to meet either the BREEAM-SE minimum standards of performance for key environmental issues or the overall threshold score required to achieve at least a Pass rating.

Minimum standards

To maintain a flexible system BREEAM-SE adopts a ‘balanced scorecard’ approach to the assessment and rating of a project. This means that to achieve a particular level of performance the majority of BREEAM-SE credits can be traded, i.e. non-compliance in one area can be offset through compliance in another to achieve the target BREEAM-SE rating.

However, to ensure that performance against fundamental environmental issues is not overlooked in pursuit of a particular rating, BREEAM-SE sets minimum standards of performance in key areas, e.g. energy, water, waste etc. It is important to bear in mind that these are minimum acceptable
levels of performance and in that respect they should not necessarily be viewed as levels that are representative of best practice for a BREEAM-SE rating level.

To achieve a particular BREEAM-SE rating, the minimum overall percentage score must be achieved and the minimum standard, detailed in Table 4, applicable to that rating level complied with.

Table 4: Minimum BREEAM-SE standards by rating level

<table>
<thead>
<tr>
<th>BREEAM-SE issue</th>
<th>Pass</th>
<th>Good</th>
<th>Very Good</th>
<th>Excellent</th>
<th>Outstanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man 03 Responsible construction practices</td>
<td>Criterion 2 only (Health and Safety)</td>
<td>Criterion 2 only (Health and Safety)</td>
<td>Criterion 2 only (Health and Safety)</td>
<td>One credit (Considerate construction)</td>
<td>Two credits (Considerate construction)</td>
</tr>
<tr>
<td>Man 04 Commissioning and handover</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Criterion 10 (Building or home user guide)</td>
<td>Criterion 10 (Building or home user guide)</td>
</tr>
<tr>
<td>Man 05 Aftercare</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>One credit (Seasonal commissioning)</td>
<td>One credit (Seasonal commissioning)</td>
</tr>
<tr>
<td>Hea 01 Visual comfort</td>
<td>Criterion 1 only (High frequency ballast)</td>
</tr>
<tr>
<td>Hea 06 Accessibility</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Two credits (Inclusive and accessible design – residential buildings only)</td>
</tr>
<tr>
<td>Hea 08 Outdoor space</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>One credit</td>
</tr>
<tr>
<td>Hea 09 Microbial contamination</td>
<td>Criterion 1 only (minimise legionellosis risk)</td>
</tr>
<tr>
<td>Ene 01 Reduction of energy use</td>
<td>None</td>
<td>One credit</td>
<td>Two credits</td>
<td>Five credits</td>
<td>Nine credits</td>
</tr>
<tr>
<td>Ene 02a Energy monitoring</td>
<td>None</td>
<td>None</td>
<td>One credit (First sub-metering credit)</td>
<td>One credit (First sub-metering credit)</td>
<td>One credit (First sub-metering credit)</td>
</tr>
<tr>
<td>Ene 04 Low carbon design</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>One credit (free of choice)</td>
</tr>
<tr>
<td>Wat 01 Water use</td>
<td>None</td>
<td>One credit</td>
<td>One credit</td>
<td>One credit</td>
<td>Two credits</td>
</tr>
<tr>
<td>Wat 02 Water monitoring</td>
<td>Criterion 1 only (mains water meter)</td>
</tr>
<tr>
<td>Mat 01 Building climate impact</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Criterion 2</td>
<td>Criterion 2</td>
</tr>
<tr>
<td>Mat 03 Responsible sourcing of construction products</td>
<td>Criterion 1 only (Legal timber)</td>
</tr>
<tr>
<td>Wst 01 Construction waste management</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>One credit</td>
</tr>
<tr>
<td>Wst 03a Operational waste</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>One credit</td>
<td>One credit</td>
</tr>
<tr>
<td>Wst 03b Operational waste</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>One credit</td>
<td>One credit</td>
</tr>
</tbody>
</table>
Environmental section weightings

Environmental weightings are fundamental to any building environmental assessment method as they provide a means of defining, and therefore ranking, the relative impact of environmental issues. BREEAM-SE uses an explicit weighting system derived from a combination of consensus-based weightings and ranking by a panel of experts. The outputs from this exercise are then used to determine the relative value of the environmental sections used in BREEAM-SE and their contribution to the overall BREEAM-SE score.

Table 5: Example BREEAM-SE section weightings for common project types

<table>
<thead>
<tr>
<th>Environmental section</th>
<th>Weighting Non-residential</th>
<th>Single residential dwellings</th>
<th>Multiple residential dwellings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fully fitted out</td>
<td>Shell only</td>
<td>Shell and core</td>
</tr>
<tr>
<td>Management</td>
<td>11.00%</td>
<td>10.72%</td>
<td>10.56%</td>
</tr>
<tr>
<td>Health and wellbeing</td>
<td>17.00%</td>
<td>11.75%</td>
<td>13.40%</td>
</tr>
<tr>
<td>Energy</td>
<td>18.00%</td>
<td>16.43%</td>
<td>17.57%</td>
</tr>
<tr>
<td>Transport</td>
<td>7.00%</td>
<td>9.23%</td>
<td>7.72%</td>
</tr>
<tr>
<td>Water</td>
<td>4.00%</td>
<td>1.76%</td>
<td>4.41%</td>
</tr>
<tr>
<td>Materials</td>
<td>17.00%</td>
<td>22.42%</td>
<td>18.76%</td>
</tr>
<tr>
<td>Waste</td>
<td>8.00%</td>
<td>9.23%</td>
<td>7.72%</td>
</tr>
<tr>
<td>Land use and ecology</td>
<td>10.00%</td>
<td>13.19%</td>
<td>11.03%</td>
</tr>
<tr>
<td>Pollution</td>
<td>8.00%</td>
<td>5.27%</td>
<td>8.83%</td>
</tr>
<tr>
<td>Total</td>
<td>100.00%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Innovation (additional)</td>
<td>10.00%</td>
<td>10.00%</td>
<td>10.00%</td>
</tr>
</tbody>
</table>

Each of the above environmental sections consists of a differing number of assessment issues and BREEAM-SE credits (as described elsewhere and defined in detail in the technical sections of this scheme document).

BREEAM-SE assessment issues and credits

BREEAM-SE New Construction v6.0 consists of 57 individual assessment issues spanning the nine environmental categories, plus a tenth category called ‘Innovation’ (described below). Each issue addresses a specific building related environmental impact or issue and has a number of credits assigned to it.

BREEAM-SE credits are awarded where a building demonstrates that it meets the best practice performance levels defined for that issue, i.e., it has mitigated an impact or, in the case of the health and wellbeing section, addressed a specific building occupant-related issue, e.g. good thermal comfort, daylight or acoustics.

The number of credits available for an individual assessment issue will vary and generally the higher the number there are for a given issue, the more important that issue is in terms of mitigating its impact. In most cases, where there are multiple credits available, the number awarded is based on a sliding scale or benchmark, where progressively higher standards of building performance are rewarded with a higher number of credits.
It is worth noting that, in addition to the environmental sections, and overall score and BREEAM-SE rating, verified performance against individual assessment issues also provides users with a credible set of key building performance indicators for a range of embodied, operational and construction phase building impacts. In this respect, in addition to using BREEAM-SE to define overall targets, it is possible to use the method to define performance levels in support of specific organisational policy objectives for individual environmental issues. Care should be taken when setting design targets using individual issues and credit levels in this way as it can limit design flexibility and have an impact on project costs.

Awarding credits for innovation

It is one of the aims of BREEAM-SE to support innovation within the construction industry and its supply chain. BREEAM-SE does this by making additional credits available for the recognition of sustainability related benefits or performance levels which are currently not recognised by standard BREEAM-SE assessment issues and criteria. By doing this BREEAM-SE is rewarding buildings that go beyond best practice in terms of a particular aspect of sustainability, i.e., where the building or its procurement has demonstrated innovation.

Awarding credits for innovation enables clients and design teams to boost their building’s BREEAM-SE performance and, in addition, helps to support the market for new innovative technologies, and design or construction practices. There are two ways in which BREEAM-SE awards ‘innovation credits’ to recognise innovation in building design and procurement. The first is by meeting exemplary performance criteria defined within an existing BREEAM-SE issue, i.e. going beyond the standard BREEAM-SE assessment criteria and therefore best practice. Note, not all assessment issues have exemplary performance criteria.

The second route is where an application is made to SGBC by the registered project’s BREEAM-SE Assessor to have a particular building technology or feature, design or construction method or process recognised as ‘innovative’. BRE Global conducts innovation approvals. If the application is successful and subsequently compliance is verified, an ‘innovation credit’ can be awarded.

An additional 1% can be added to a building’s overall score for each ‘innovation credit’ achieved. The maximum number of ‘innovation credits’ that can be awarded for any one building is 10; therefore the maximum available additional score for ‘innovation’ is 10%. The building’s final BREEAM-SE score will be capped at 100%. Innovation credits can be awarded regardless of the building’s final BREEAM-SE rating, i.e. they can be awarded at any BREEAM-SE rating level. Refer to the Inn 01 Innovation section for more detail.
Calculating a building’s BREEAM-SE rating

A BREEAM-SE Assessor must determine the BREEAM-SE rating using the appropriate assessment tools and calculators. An indication of performance against the BREEAM-SE scheme can also be determined using a BREEAM-SE Pre-Assessment Estimator. The Pre-Assessment Estimator is available at SGBC’s webpage: www.sgbc.se. Any pre-assessment estimate of the rating a project may achieve should be informed by a licensed BREEAM-SE Assessor who understands the full details of the process where this is used to inform business, funding or contractual decisions.

The process of determining a BREEAM-SE rating is outlined below and an example calculation included in Table 6.

1. Firstly, the scope of the project being assessed needs to be determined, i.e. Shell Only or Shell and Core. The appropriate BREEAM-SE assessment tool or calculator then adjusts the scoring and weightings to reflect the categories and individual credits assessed.
2. The BREEAM-SE Assessor will then determine for each of BREEAM-SE’s nine environmental sections (as applicable) the number of ‘credits’ awarded. This must be determined by the BREEAM-SE Assessor in accordance with the criteria of each assessment issue (as detailed in the technical sections of this document).
3. The percentage of ‘credits’ achieved is then calculated for each section.
4. The percentage of ‘credits’ achieved in each section is then multiplied by the corresponding section weighting. This gives the overall environmental section score.
5. The section scores are then added together to give the overall BREEAM-SE score.
6. The overall score is then compared to the BREEAM-SE rating benchmark levels and, provided all minimum standards have been met, the relevant BREEAM-SE rating is achieved.
7. An additional 1% can be added to the final BREEAM-SE score for each ‘innovation credit’ achieved (up to a maximum of 10% and with the total BREEAM-SE score capped at 100%).

Table 6: Example BREEAM-SE score and rating calculation

<table>
<thead>
<tr>
<th>BREEAM-SE section</th>
<th>Credits achieved</th>
<th>Credits available</th>
<th>% of Credits achieved</th>
<th>Section weighting (Fully fitted)</th>
<th>Section score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>10</td>
<td>23</td>
<td>43.48%</td>
<td>0.11</td>
<td>4.78%</td>
</tr>
<tr>
<td>Health and wellbeing</td>
<td>17</td>
<td>21</td>
<td>80.95%</td>
<td>0.17</td>
<td>13.76%</td>
</tr>
<tr>
<td>Energy</td>
<td>16</td>
<td>26</td>
<td>61.54%</td>
<td>0.18</td>
<td>11.08%</td>
</tr>
<tr>
<td>Transport</td>
<td>5</td>
<td>9</td>
<td>55.56%</td>
<td>0.07</td>
<td>3.89%</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>9</td>
<td>55.56%</td>
<td>0.04</td>
<td>2.22%</td>
</tr>
<tr>
<td>Materials</td>
<td>10</td>
<td>13</td>
<td>76.92%</td>
<td>0.17</td>
<td>13.08%</td>
</tr>
<tr>
<td>Waste</td>
<td>3</td>
<td>8</td>
<td>37.50%</td>
<td>0.08</td>
<td>3.00%</td>
</tr>
<tr>
<td>Land use and ecology</td>
<td>5</td>
<td>10</td>
<td>50.00%</td>
<td>0.10</td>
<td>5.00%</td>
</tr>
<tr>
<td>Pollution</td>
<td>5</td>
<td>12</td>
<td>41.67%</td>
<td>0.08</td>
<td>3.33%</td>
</tr>
<tr>
<td>Innovation</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>0.10</td>
<td>2.00%</td>
</tr>
<tr>
<td>Final BREEAM-SE score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.14%</td>
</tr>
<tr>
<td>BREEAM-SE Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VERY GOOD</td>
</tr>
</tbody>
</table>
Table 7: Minimum standards for a BREEAM-SE 'Very Good' rating

<table>
<thead>
<tr>
<th>Minimum standards for a BREEAM-SE 'Very Good' rating</th>
<th>Achieved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man 03 Responsible construction practices</td>
<td>Y</td>
</tr>
<tr>
<td>Hea 01 Visual comfort</td>
<td>Y</td>
</tr>
<tr>
<td>Hea 09 Microbial contamination</td>
<td>Y</td>
</tr>
<tr>
<td>Ene 01 Reduction of energy use</td>
<td>Y</td>
</tr>
<tr>
<td>Ene 02a Energy monitoring</td>
<td>Y</td>
</tr>
<tr>
<td>Wat 01 Water use</td>
<td>Y</td>
</tr>
<tr>
<td>Wat 02 Water monitoring</td>
<td>Y</td>
</tr>
<tr>
<td>Mat 03 Responsible sourcing of construction products</td>
<td>Y</td>
</tr>
</tbody>
</table>

Alignment with the EU taxonomy

The EU taxonomy for sustainable finance will provide investors with a better basis for strategic investment choices and contribute to a more transparent market for sustainable investment. BREEAM-SE is adapted to the taxonomy’s Annex on climate change mitigation and climate change adaptation for construction of new buildings.

The manual contains technical screening criteria (TSC) for substantially contribution for climate change mitigation and climate change adaptation. It also includes the DNSH (Do no significant harm) criteria for sustainable and protection of water and marine resources, transition to a circular economy, pollution prevention and control and protection and restoration of biodiversity and ecosystems. Minimum safeguards are not included in BREEAM-SE.

Assessments can use BREEAM-SE to show compliance with the taxonomy requirements regardless of rating. Table 8 gives an overview of which issues and criteria that must be met to show compliance with the taxonomy. The BREEAM-SE related scoring and reporting tool can be used to map compliance.

Both Fully fitted and Shell and Core buildings can use BREEAM-SE to align with the taxonomy requirements, if they meet the criteria listed in table 8.

Alignment with the taxonomy is achieved on a building level. The BREEAM assessment can be used for parts of a building, hence only the scope of the assessment has been reviewed as part of the certification.

The Taxonomy is under development and interpretations and FAQs are expected. If any changes/interpretations are made by the EU commission or by the Swedish authorities that contradict our interpretations, the criteria may be updated in Compliance notes.
Substantial contribution to climate mitigation

<table>
<thead>
<tr>
<th>Criteria in the EU taxonomy</th>
<th>Issue</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Primary Energy Demand (PED), defining the energy performance of the building resulting from the construction, is at least 10% lower than the threshold set for the nearly zero-energy building (NZEB) requirements in national measures implementing Directive 2010/31/EU of the European Parliament and of the Council</td>
<td>Ene 01</td>
<td>2, 3</td>
</tr>
<tr>
<td>The energy performance is certified using an as built Energy Performance Certificate (EPC).</td>
<td>Ene 01</td>
<td>N/A*</td>
</tr>
<tr>
<td>For buildings larger than 5000 m², upon completion, the building resulting from the construction undergoes testing for airtightness and thermal integrity, and any deviation in the levels of performance set at the design stage or defects in the building envelope are disclosed to investors and clients. As an alternative, where robust and traceable quality control processes are in place during the construction process this is acceptable as an alternative to thermal integrity testing.**</td>
<td>Man 04</td>
<td>8</td>
</tr>
<tr>
<td>For buildings larger than 5000 m², the life-cycle Global Warming Potential (GWP) of the building resulting from the construction has been calculated for each stage in the life cycle and is disclosed to investors and clients.</td>
<td>Mat 01</td>
<td>2***</td>
</tr>
</tbody>
</table>

Substantial contribution to climate adaptation

<table>
<thead>
<tr>
<th>Criteria in the EU taxonomy</th>
<th>Issue</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>The economic activity has implemented physical and non-physical solutions (‘adaptation solutions’) that substantially reduce the most important physical climate risks that are material to that activity.</td>
<td>Wst 05</td>
<td>2-3</td>
</tr>
<tr>
<td>The physical climate risks that are material to the activity have been identified from those listed in Appendix A to this Annex by performing a robust climate risk and vulnerability assessment with the following steps: screening of the activity to identify which physical climate risks from the list in Appendix A to this Annex may affect the performance of the economic activity during its expected lifetime; where the activity is assessed to be at risk from one or more of the physical climate risks listed in Appendix A to this Annex, a climate risk and vulnerability assessment to assess the materiality of the physical climate risks on the economic activity; an assessment of adaptation solutions that can reduce the identified physical climate risk.</td>
<td>Wst 05</td>
<td>1</td>
</tr>
<tr>
<td>The climate risk and vulnerability assessment is proportionate to the scale of the activity and its expected lifespan, such that: for activities with an expected lifespan of less than 10 years, the assessment is performed, at least by using climate projections at the smallest appropriate scale, for all other activities, the assessment is performed using the highest available resolution, state-of-the-art climate projections across the existing range of future scenarios consistent with the expected lifetime of the activity, including, at least, 10 to 30 year climate projections scenarios for major investments.</td>
<td>Wst 05</td>
<td>1</td>
</tr>
<tr>
<td>The climate projections and assessment of impacts are based on best practice and available guidance and take into account the state-of-the-art science for vulnerability and risk analysis and related methodologies in line with the most recent Intergovernmental Panel on Climate Change reports, scientific peer-reviewed publications and open source or paying models.</td>
<td>Wst 05</td>
<td>1</td>
</tr>
<tr>
<td>The adaptation solutions implemented: do not adversely affect the adaptation efforts or the level of resilience to physical climate risks of other people, of nature, of cultural heritage, of assets and of other economic activities favour nature-based solutions or rely on blue or green infrastructure to the extent possible are consistent with local, sectoral, regional or national adaptation plans and strategies are monitored and measured against pre-defined indicators and remedial action is considered where those indicators are not met where the solution implemented is physical and consists in an activity for which technical screening criteria have been specified in this Annex, the solution complies with the do no significant harm technical screening criteria for that activity.</td>
<td>Wst 05</td>
<td>3</td>
</tr>
</tbody>
</table>
Do No Significant Harm (DNSH) technical criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Scoring tool</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The building is not dedicated to extraction, storage, transport or manufacture of fossil fuels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Primary Energy Demand (PED) setting out the energy performance of the building resulting from the construction does not exceed the threshold set for the nearly zero-energy building (NZEB) requirements in national regulation implementing Directive 2010/31/EU.</td>
<td>Ene 01</td>
<td>2.3</td>
</tr>
<tr>
<td>The energy performance is certified using an as built Energy Performance Certificate (EPC).</td>
<td>Ene 01</td>
<td>N/A*</td>
</tr>
<tr>
<td>Adaption to climate change. Perform a risk analysis and implement proportionate measures based on best practice and most recent scenarios.</td>
<td>Wst 05</td>
<td>1</td>
</tr>
<tr>
<td>Where installed, except for installations in residential building units, the specified water use for the following water appliances are attested by product datasheets, a building certification or an existing product label in the Union, in accordance with the technical specifications laid down in Appendix E to Annex I to this Regulation: wash hand basin taps and kitchen taps have a maximum water flow of 6 litres/min showers have a maximum water flow of 8 litres/min WCs, including suites, bowls and flushing cisterns, have a full flush volume of a maximum of 6 litres and a maximum average flush volume of 3.5 litres urinals use a maximum of 2 litres/bowl/hour. Flushing urinals have a maximum full flush volume of 1 litre.</td>
<td>Wat 01</td>
<td>1 (performance level 3)</td>
</tr>
<tr>
<td>Develop a protection management plan to avoid impact from the construction site related to preserving water quality and avoiding water stress. Risks are identified and addressed with the aim of achieving good water status and good ecological potential status.</td>
<td>Man 03</td>
<td>8–9 (Checklist A1, section 3i)</td>
</tr>
<tr>
<td>At least 70% (by weight) of the non-hazardous construction and demolition waste (excluding naturally occurring material referred to in category 17 05 04 in the European List of Waste established by Decision 2000/532/EC) generated on the construction site is prepared for reuse, recycling and other material recovery, including backfilling operations using waste to substitute other materials, in accordance with the waste hierarchy and the EU Construction and Demolition Waste Management Protocol. Operators limit waste generation in processes related to construction and demolition, in accordance with the EU Construction and Demolition Waste Management Protocol and taking into account best available techniques and using selective demolition to enable removal and safe handling of hazardous substances and facilitate reuse and high-quality recycling by selective removal of materials, using available sorting systems for construction and demolition waste.</td>
<td>Wst 01</td>
<td>9</td>
</tr>
<tr>
<td>Building designs and construction techniques support circularity and in particular demonstrate, with reference to ISO 20887 or other standards for assessing the disassembly or adaptability of buildings, how they are designed to be more resource efficient, adaptable, flexible and dismantlable to enable reuse and recycling.</td>
<td>Wst 06</td>
<td>1</td>
</tr>
<tr>
<td>Building components and materials used in the construction are in accordance with the EU regulations for hazardous substances (REACH).</td>
<td>Mat 07</td>
<td>7–8</td>
</tr>
<tr>
<td>Building components and materials used in the construction and which can come into contact with users are low-emitting with regard to formaldehyde and carcinogenic VOCs.</td>
<td>Hea 02</td>
<td>10****</td>
</tr>
<tr>
<td>Where the new construction is located on a potentially contaminated site (brownfield site), the site has been subject to an investigation for potential contaminants, for example using standard ISO 18400.</td>
<td>LE 01</td>
<td>2–4</td>
</tr>
<tr>
<td>Measures are taken to reduce noise, dust and pollutant emissions during construction or maintenance works.</td>
<td>Man 03</td>
<td>8–9 (Checklist A1, section 2h)</td>
</tr>
</tbody>
</table>
An Environmental Impact Assessment (EIA) or screening has been completed. The required mitigation and compensation measures for protecting the environment are implemented. For sites located in or near biodiversity-sensitive areas, an appropriate assessment, where applicable, has been conducted and based on its conclusions the necessary mitigation measures are implemented.

The new construction is not built on sites that are defined as
a. Arable land and crop land,
b. Land of recognised high biodiversity value or habitat of endangered species, or
c. Land matching the definition of forest.

* The Energy Performance Certificate (EPC) will not be required as evidence, but will be followed up with a check box in the Assessment Scoring and Reporting Tool.*

** The type of area m² referred to has not been defined within the taxonomy. A clarification will be posted on SGBC website.

*** Mat01, criteria 2 is applicable to buildings of all sizes

**** Hea02 accepts emission limits ≤ 0.06 mg/m³

Producing case studies for BREEAM-SE ‘Outstanding’ and ‘Excellent’ rated buildings

Projects certified to the BREEAM-SE ‘Outstanding’ and ‘Excellent’ rating should act as exemplars for the industry. If they are to do this, case studies of these projects are needed so that other project teams and clients can refer to them.

For this reason, ‘Outstanding’ and ‘Excellent’ rated projects must provide a case study of the building, using the template provided on SGBC’s SharePoint page for licensed assessors, as part of the evidence for the BREEAM-SE assessor’s Final Certification Report (at Post Construction). The case study must be provided in Swedish and the case study will be published on SGBC’s website. If the assessor would like the case study to be published on BRE’s website as well, the assessor should also include an English copy of the case study.
4.0 The BREEAM-SE evidential requirements

This section provides guidance to assessors and project teams on the types of evidence required to demonstrate compliance with BREEAM-SE issues.

Why does BREEAM-SE require evidence?

BREEAM-SE is a third-party assessment and certification scheme operated in accordance with Swedish and international standards. Operating to these standards ensures that certification schemes such as BREEAM-SE are run in a consistent and reliable manner. The BREEAM-SE Assessor’s assessment report and the SGBC quality assurance process are the fundamental tenets of BREEAM-SE, ensuring consistency of, and confidence in, the BREEAM-SE rating awarded by the assessor.

To maintain this consistency and credibility, all certification decisions must be based on verified and credible project information that is traceable, i.e. evidence based. This is not only important for ensuring compliance with the standards to which BREEAM-SE operates, but also in terms of managing risk to clients and BREEAM-SE Assessors in the event that a certification outcome is challenged.

The assessment report and the BREEAM-SE Assessor role

It is the BREEAM-SE Assessor who determines the BREEAM-SE rating and the assessment report is the formal record of an assessor’s audit against the criteria defined in the Technical Manual for a BREEAM-SE scheme. The BREEAM-SE certificate issued by SGBC provides assurance that the service provided by the assessor (that is, the process of producing the assessment report) has been conducted in accordance with the requirements of the scheme. The purpose of the certificate is therefore to give confidence to the client in the assessor’s performance and processes in determining a BREEAM-SE rating.

It is the role of the assessor to gather project information and use it to assess performance against the BREEAM-SE scheme in a competent and impartial manner. To award a BREEAM-SE credit, the assessor must be satisfied beyond reasonable doubt that the evidence gathered demonstrates unambiguous compliance with all relevant criteria defined in the BREEAM-SE scheme. All evidence must be appropriately referenced in the formal report produced by the assessor and made available on request from SGBC for quality assurance checks.

The assessor should preferable not be working within the design team. However, the assessor can be someone within the design team or work for the same company as the design team member(s) but the assessor must then identify and manage any potential conflicts of interest. If the assessor is a member of the company who are producing evidence to demonstrate compliance, there must be clear separation of the roles and the BREEAM assessor must not be personally responsible for producing such evidence.
An individual cannot be both assessor and AP for the same project at the same time. If two employees at the same company combines their role as BREEAM assessor with one or more other roles within the project team (e.g. energy assessor, suitably qualified ecologist or client representative) this information should be made clear to SGBC upon registration of the assessment. At QA, the assessor must submit a statement confirming the roles undertaken and how any potential conflicts of interest have been managed. In such circumstances the assessment and evidence submitted may be subject to closer scrutiny. Where SGBC has unresolved concerns relating to potential conflicts of interest, additional measures may be imposed to verify the integrity of the submitted assessment.

Clear, ordered and well referenced evidence for each BREEAM-SE issue and criterion facilitates efficient quality assurance and certification. BREEAM-SE Assessors can access general guidance on assessment report referencing in Assessor Guidance Note 01, available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs. Assessors must also make sure to follow the guidelines of the Operations Manual for BREEAM-SE, included in the license pack for BREEAM-SE assessors.

SGBC should always be contacted when the assessor is changed for a project. Whether the change is within the same company or between organisations. Please contact breeam@sgbc.se for more information regarding fees and routines.

Evidence

Evidence should not necessarily need to be prepared specifically for the purpose of the BREEAM-SE assessment. In many instances, the assessor should be able to source readily available and prepared project information for the purpose of demonstrating compliance. For this reason, BREEAM-SE aims to avoid being prescriptive on the type of evidence required, while each issue does have specific documents listed these are provided as guidance rather than a definite list.

The assessor and project team will find that many assessment issues require more than one piece or type of information to demonstrate compliance with one criterion, or alternatively, one piece of information may be sufficient to demonstrate compliance with multiple criteria.

Written commitments at the interim stage of assessment – Design stage

At the interim design stage of assessment it is permissible to use letters or emails to demonstrate intent to comply with BREEAM-SE criteria (provided they meet the requirements for the communication records below). Such evidence must also make clear the actions and evidence (or an understanding thereof) that will be undertaken and provided to ensure the project’s ongoing compliance, particularly at the final stage of assessment, i.e., post-construction. This is to ensure that the party who makes the commitment is clearly aware of the actions and evidence that needs to be supplied to demonstrate compliance with BREEAM-SE at the final stage of assessment. For example, in many circumstances it would not be acceptable for the design team to copy and paste the BREEAM-SE criteria into a formal commitment. The commitment should specifically detail how criteria are to be achieved in the context of the assessment, and often copying and pasting the BREEAM-SE criteria will not provide this level of detail.
While letters of commitment can play a role in demonstrating compliance, they are not a replacement for more formal and established types of project information. The assessor must not award credits where they have a reason to doubt the validity or intent of written commitments, or where it is not unreasonable to expect formal design or specification information to be available to confirm compliance.

Written commitments at the final stage of assessment – Post-construction

As stated in the Scope section, there are two types of assessments that can be carried out at the post-construction stage, a post-construction review of a design stage assessment, or a post-construction assessment (where no design stage assessment has been carried out). The ‘Final post-construction stage’ column of the evidence table in each issue assumes that a design stage assessment has been completed. Where a design stage assessment has not been completed, the assessor will need to review both the ‘Interim design stage’ and ‘Final post-construction stage’ evidence listed in the evidence table and ensure sufficient evidence is submitted with the assessment to demonstrate compliance with the criteria.

Evidence supplied at the post-construction stage must be reflective of the completed building and must therefore demonstrate what has actually been implemented. For example, if sub-meters have been specified at the design stage, evidence at the post-construction stage would need to demonstrate that these have actually been installed. Appropriate evidence may be a site inspection report with supporting photographs or as-built drawings showing the location of the sub-meters.

Letters of commitment cannot be used to demonstrate compliance at the final, post-construction stage of assessment. The only exception to this is where the criteria require an action to take place post-construction, i.e. after handover and possibly during the building operation. An example could be a written commitment from the building owner or occupier making a commitment to conduct post occupancy evaluation. As with written commitments at the design stage, the BREEAM-SE Assessor must not award BREEAM-SE credits where they have a reason to doubt the validity or intent of written commitments or where it is not unreasonable to expect formal documentation, e.g. a schedule of services or professional services contract.

Evidence principles that BREEAM-SE Assessors and the SGBC Quality Assurance work to

As described above, where specific evidence is stated in the ‘Evidence’ table within each assessment issue, this must be sourced and verified by the BREEAM-SE Assessor.

In determining the appropriateness of evidence for each issue, the principles outlined in Table 9 must be considered by BREEAM-SE Assessors. Where the evidence meets the principles outlined in Table 9 and, where appropriate, the guidance provided in the ‘Robustness of evidence’ section, such evidence is admissible for the purpose of the assessment and the SGBC Quality Assurance checks.

These principles are not listed in a hierarchical order and are all equally important when considering which evidence type to submit to demonstrate compliance for each issue or criterion.
Table 9: BREEAM-SE Evidence principles

<table>
<thead>
<tr>
<th>Summary</th>
<th>Principle</th>
<th>Objective</th>
<th>A question to ask to check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evidence provided for all criteria for all credits sought</td>
<td>Evidence must demonstrate that ALL relevant* criteria and sub-criteria for each credit sought are achieved and where relevant, is provided to support compliance notes, definitions etc.</td>
<td>Completeness</td>
</tr>
<tr>
<td>2</td>
<td>Unambiguous assessment</td>
<td>The assessment must demonstrate unambiguous compliance and the evidence must support this assessment. Evidence (and supporting notes) must clearly demonstrate to a third party reviewer that the criteria have been met.</td>
<td>Independent review compatibility</td>
</tr>
<tr>
<td>3</td>
<td>Robust</td>
<td>When selecting the evidence, always ensure it is robust and relevant to the stage of assessment. The selected evidence contains all the relevant basic information, with the necessary constituent parts to be deemed robust. (See 4 The BREEAM-SE evidential requirements section for further details on both of these principles).</td>
<td>Proof that evidence is robust and from a reliable source.</td>
</tr>
<tr>
<td>4</td>
<td>Use existing evidence</td>
<td>Use existing project information to demonstrate compliance. In most cases evidence should not need to be 'created' for BREEAM-SE compliance purposes.</td>
<td>Minimises evidence and reduces time and cost of compliance.</td>
</tr>
</tbody>
</table>

*Where the assessor or design team deem specific criteria ‘not relevant’ to the assessment, a full justification should be collated and then submitted as a technical query for review by SGBC.

Robustness of Evidence

Robust evidence provides confirmation that the assessment has been carried out correctly and the building complies with the criteria for the BREEAM-SE credits sought. The assessor should consider the following when gathering project information and evaluating whether the evidence provided is as ‘robust’ as possible:

- Is there more than one piece of evidence that could be used to demonstrate compliance?
- Is the chosen evidence the most robust and appropriate piece of evidence to demonstrate that a particular criterion has been achieved?

Any evidence submitted for a BREEAM-SE assessment must be robust in terms of its source and its traceability. Below is a list of the minimum information the assessor must expect to see when certain types of evidence are submitted.

Communication records: Any communication records used as evidence must provide clear confirmation of the site name, author’s identity and role, the date and recipient’s identity.
Formal letters of correspondence: Must be on company or organisation headed note-paper with a signature (electronic signatures are acceptable). Letters should be a secured document. (Please see sections relating to written commitment for further information.)

Meeting minutes: Must include date, location and attendee information (names, organisations and roles), along with a record of the meeting and agreed actions.

Drawings: All drawings must have the building or site name, phase (if applicable), title of drawing, date, revision number and a scale.

Specification: A specification must be clear that it relates to the project under assessment, and it must have a date and revision number. Where sections of a specification are provided, the assessor should reference the extract and as a minimum submit the front page of the specification detailing the project name, revision number and date.

Standards: When providing evidence of compliance, it is important for design teams to clearly refer to the version and/or year of the standard being complied with for an assessment.

Site inspection report: A site inspection report must include the building or site name, date, author and summary text to detail what was witnessed, confirming compliance. Photographic evidence can be used to support the text in the report.

For other types of evidence not listed, the assessor should use the above as a guide for the sort of evidence that is suitable. As a minimum, in most cases, the evidence used to assess compliance should always contain key information such as the project name, the author, date, revision numbers etc.
5.0 Management

Summary

This category encourages the adoption of sustainable management practices in connection with design, construction, commissioning, handover and aftercare activities to ensure that robust sustainability objectives are set and followed through into the operation of the building. Issues in this section focus on embedding sustainability actions through the key stages of design, procurement and initial occupation from the initial project brief stage to the appropriate provision of aftercare.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man 01 Project brief and design</td>
<td>4</td>
<td>Stakeholder consultation covering coordinated design process and Dialogue with relevant third parties. BREEAM-SE AP appointed to facilitate the setting, monitoring and achievement of BREEAM-SE performance targets for the project.</td>
</tr>
<tr>
<td>Man 02 Life cycle cost and service life planning</td>
<td>4</td>
<td>Recognising and encouraging the use of life cycle costing and service life planning and the sharing of data to raise awareness and understanding.</td>
</tr>
<tr>
<td>Man 03 Responsible construction practices</td>
<td>6</td>
<td>The principal contractor demonstrates sound environmental management practices and consideration for neighbours across their activities on site. Site related energy, water and transport impacts are monitored and reported to ensure ongoing compliance during the Construction, Handover and Close Out stages and to improve awareness and understanding for future projects.</td>
</tr>
<tr>
<td>Man 04 Commissioning and handover</td>
<td>4</td>
<td>Schedule of commissioning including optimal timescales and appropriate testing and commissioning of all building services systems and building fabric in line with best practice. Inspecting, testing, identifying and rectifying defects via an appropriate method. Provision of a non-technical building user guide and user training or operator training timed appropriately around handover and proposed occupation.</td>
</tr>
<tr>
<td>Man 05 Aftercare</td>
<td>3</td>
<td>Provision of the necessary infrastructure and resources to provide aftercare support to the building occupiers. Seasonal commissioning activities will be completed over a minimum 12 month period, once the building becomes substantially occupied. The client or building occupier commit to carrying out a post occupancy evaluation (POE) exercise one year after initial building occupation and to disseminate the findings in terms of the building’s post occupancy performance.</td>
</tr>
<tr>
<td>Man 06 Moisture safety</td>
<td>2</td>
<td>Prevention of future moisture problems through moisture safety planning, relevant experts and controls, measurements and drying estimations.</td>
</tr>
</tbody>
</table>
Man 01 Project brief and design

Number of credits available	Minimum standards
4 | No

Aim

To recognise and encourage an integrated design process that optimises building performance.

Assessment criteria

This issue is split into three parts:

- Coordinated design process (1 credit)
- Dialogue with relevant third-party stakeholders (1 credit)
- BREEAM-SE AP (2 credits)

The following is required to demonstrate compliance:

One credit – Coordinated design process

1. A clear sustainability brief is developed prior to completion of the concept design (tidigt programhandlingsskede). For the development of the sustainability brief all the project delivery stakeholders (see Relevant definitions) should be included in the work. The sustainability brief sets out:

 1.a Sustainability objectives and targets including target BREEAM-SE rating, business objectives etc
 1.b Client requirements, e.g. internal environmental conditions required
 1.c Constraints for the project, e.g. technical, legal, physical, environmental
 1.d Timescales for the sustainability works in accordance with the project’s timescales
 1.e List of consultees and professional appointments that may be required for the sustainability work of the project.

2. Prior to completion of the concept design (tidigt programhandlingsskede), the project delivery stakeholders (see Relevant definitions) have met to identify and define the frames for their roles in the project and the responsibilities and contributions for each role. The coordinated design process should have an influence on the initial project brief. Roles, responsibilities and contributions for each of the affected phases of project delivery and the following aspects must be considered (when relevant):

 2.a End user requirements
 2.b Provision of appropriate internal and external facilities (for future building occupants, visitors and users)
 2.c Aims of the design and design strategy
 2.d Particular installation and construction requirements and limitations
 2.e Procurement and supply chain
2.f Occupiers’ budget and technical expertise in maintaining any proposed systems
2.g Maintainability and adaptability of the proposals
2.h Requirements for the production of project and end user documentation
2.i Requirements for commissioning, training and aftercare support.

One credit – Dialogue with relevant third-party stakeholders

3. Prior to completion of the concept design work stage (tidigt programhandlingsskede), all relevant third-party stakeholders (see Relevant definitions – Relevant third parties) have been consulted by the design team and this covers the minimum consultation content (see compliance note CN3). For the connection between the dialogue with relevant third-party stakeholders and the municipal consultation, see explanation under Other information.

4. The project must demonstrate in writing how the stakeholder contributions and outcomes of the consultation exercise have influenced or changed the initial project brief and concept design (tidigt programhandlingsskede).

5. Prior to completion of the concept design work stage response to comments received and results from the dialogue process has been given to all relevant third party stakeholders.

Additionally for Education only:

6. The consultation exercise has been carried out by an independent party (see Relevant definitions).

One credit – BREEAM-SE AP (design)

7. A BREEAM-SE AP has been appointed to facilitate the setting and achievement of BREEAM-SE performance targets for the project. The design stage BREEAM-SE AP is appointed to perform this role during the feasibility (Preparation and Brief, i.e. Förstudie) stage.

8. The defined BREEAM-SE performance targets have been formally agreed (see Relevant definitions) between the client and design or project team no later than the concept design work stage (tidigt programhandlingsskede).

9. To achieve this credit at the interim design stage assessment, the agreed BREEAM-SE performance targets must be demonstrably achieved by the project design. This must be demonstrated via the BREEAM-SE Assessor’s design stage assessment report.

One credit – BREEAM-SE AP (monitoring progress)

10. The credit for BREEAM-SE AP (design) (criteria 7 to 9) has been achieved.

11. A BREEAM-SE AP is appointed to monitor progress against the agreed BREEAM-SE performance targets throughout the design process and formally report progress to the client and design team.

12. The BREEAM-SE AP must attend key project and design team meetings during the concept design (tidigt programhandlingsskede), developed design (programhandlingsskede) and technical design (systemhandlingsskede) work stages (see Relevant definitions). Reporting must be carried out during and prior to completion of each stage, as a minimum.
Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN1</td>
<td>Applicable assessment criteria</td>
</tr>
<tr>
<td></td>
<td>CN2</td>
<td>Applicable assessment criteria</td>
</tr>
<tr>
<td></td>
<td>CN2.1</td>
<td>Applicable assessment criteria</td>
</tr>
<tr>
<td></td>
<td>CN2.2</td>
<td>BREEAM-SE AP for single dwellings</td>
</tr>
<tr>
<td></td>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN2</td>
<td>Applicable assessment criteria</td>
</tr>
<tr>
<td></td>
<td>CN2.1</td>
<td>Applicable assessment criteria</td>
</tr>
<tr>
<td></td>
<td>CN2.2</td>
<td>BREEAM-SE AP for single dwellings</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN3</td>
<td>Minimum consultation content. See criterion 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN3.1</td>
<td>BREEAM-SE related performance targets. See criteria 7 to 11.</td>
</tr>
</tbody>
</table>
Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinated design process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2</td>
<td>Sustainability brief and a description of the project delivery stakeholders’ involvement in the sustainability brief and the initial project brief. Minutes from stakeholder meetings. A list of the stakeholders consulted, and their roles and responsibilities.</td>
<td>As design stage.</td>
</tr>
<tr>
<td>Dialogue with relevant third party stakeholders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–6</td>
<td>A list of the third party stakeholders consulted (private persons, companies or organisations, private persons can be listed anonymously). A plan setting out the process and the scope of the dialogue. Agenda or minutes from dialogue meetings. Documentation demonstrating feedback from the dialogue process and subsequent actions.</td>
<td>As design stage.</td>
</tr>
<tr>
<td>BREEAM-SE AP credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7–12</td>
<td>The BREEAM-SE AP appointment letter. Relevant section or clauses of the building specification or contract. Project programme indicating the dates by which the key work stages (Preparation and design) are to be completed. Meeting notes or minutes, recorded correspondence or schedules that can demonstrate BREEAM-SE issues are a regular agenda item and BREEAM-SE AP attendance. The BREEAM-SE AP progress report (for each work stage). Design stage BREEAM-SE assessment report.</td>
<td>As design stage, plus the final post-construction assessment report.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Affected phases

The definition of affected phases of project delivery includes the following:

- Concept design (tidigt programhandlingsskede)
- Developed design (programhandlingsskede)
- Construction
• Commissioning and handover
• In-use occupation.

BREEAM-SE Advisory Professional (AP)

An individual trained and qualified by SGBC as a specialist in built environment sustainability, environmental design and assessment. The role of the BREEAM-SE AP is to facilitate the project team’s efforts to successfully schedule activities, set priorities and negotiate the trade-offs required to achieve a target BREEAM-SE rating when the design is formally assessed. Only licensed BREEAM-SE APs comply with the BREEAM-SE requirements. The licence ensures an adequate level of competence is maintained through regular continuing professional development (CPD) in key relevant areas. For a list of BREEAM-SE APs employed by SGBC’s member organisations, please visit www.sgbc.se.

Note: The aim of the BREEAM-SE AP credits is to encourage an integrated design and construction process that uses BREEAM-SE as a framework for establishing, agreeing and achieving the desired level of sustainability performance for the project. The BREEAM-SE AP credits in this BREEAM-SE issue focus on achieving this objective through the provision of appropriate expertise during the preparation, brief, and design stages of the project.

BREEAM-SE related performance targets

BREEAM-SE performance targets refer specifically to the BREEAM-SE rating and minimum standards required. This does not necessarily include individual targeted BREEAM-SE issues or credits, which may be traded over the course of the project as it evolves. In agreeing a BREEAM-SE target, it is recommended that individual BREEAM-SE issues, credits and criteria are targeted or prioritised. This is to ensure that the agreed target is achievable and achieved without potentially costly alterations to the design at a later stage.

Formally agreed

The term ‘formally agreed’ relates to BREEAM-SE performance targets. Examples of formal agreements include a contract or letters of appointment with the architect and other relevant project team members.

Independent party (see criterion 6)

1. A party independent of the design process
 OR
2. If the consultation is to be carried out by an organisation involved with the design of the building, e.g. the project architect, then they must present the assessor with evidence that robustly demonstrates the independence of the consultation process. BREEAM-SE has not attempted to define what form this evidence must take. The onus is on the design team or relevant individual to clearly demonstrate to the BREEAM-SE Assessor a credible level of independence.

Key design team meetings

Key design team meetings can be defined as those where fundamental decisions that influence or affect the building’s proposed design and its construction in accordance with the design (and
therefore the building’s sustainability impacts and BREEAM-SE performance), are discussed and made. These meetings would typically include representatives from at least three of the parties listed below:

1. Representatives of the client or developer
2. The principal contractor
3. The architect
4. Structural engineers
5. Building services engineers
6. Cost consultants
7. Environmental consultants
8. Project management consultants.

Project delivery stakeholders

The project delivery stakeholders are:

- The client
- Building occupier
- Facilities management or those responsible for the day-to-day operation of the buildings and grounds
- The design team
- The principal contractor

BREEAM-SE recognises that for some projects, the building occupier, facility management and/or the principal contractor for the works might not be appointed at the early stages of the project. Those could then replaced by an other suitably experienced person for their questions is involved at an early stage in order to make sure their perspective is taken into account, or that their interest is taken into account in another way. For example could the principal contractor be replaced by another experienced person with substantial construction or contracting experience in similar projects.

Relevant third parties (see criterion 5)

A representative consultation group from the existing community, local business and local associations and clubs.

AND the following where relevant:

- In educational buildings, representatives from the local education authority, school board etc.
- Local or national historic or heritage groups (over and above any requirements relating to statutory consultees)

Other information

Coordination with the municipal planning consultation for the dialogue with third parties

In Man 01 *Dialogue with relevant third-party stakeholders* (criterion 3–6), projects are rewarded for involving third parties at an early stage where the parameters for the project are set and third
parties have an opportunity to influence them. In Sweden, projects covered by a planning process will be required by law to involve third parties through the municipal planning consultation. Results from this process relevant to the BREEAM certification may form part of the basis in Man 01 but do not usually constitute the entire results required by the issue.

In the municipal consultation, it is often a detailed plan for an area larger than the site in question that is being handled, while the BREEAM-SE requirements for dialogue with relevant third parties focus on the individual building and its site. In these cases, it is important from BREEAM-SE’s point of view that it is clear that the project in question has been included in the consultation.

With regard to the questions that shall be included in the dialogue with relevant third parties, according to CN3 Minimum consultation content, the level of detail required is higher for BREEAM-SE than the usual level of detail in municipal consultations, as the buildings themselves often may be less developed.

The Breeam process focuses on seeking answers regarding how the general public, users and associations can make use of a new building and what the new building adds and what it affects. The consultation’s views may focus on completely different parts, such as how the municipality has proposed to place a street right through an area that encompasses valuable nature or whether the nearby residents are worried about subsidence on their properties in connection with the implementation. Therefore, it becomes important in BREEAM’s dialogue with third parties that the question or issue under discussion is framed to deal with the individual building/plot, for otherwise this can disappear in the broader perspective.

There are various issues that must be included in the Dialogue with relevant third-party stakeholders (according to BREEAM-SE) and in the municipal consultation that takes place in connection with the detailed plan, and the requirements of the municipal consultation cannot replace the requirements in BREEAM-SE directly; thus, where relevant parts of the municipal consultation are used as evidence, the project must show how this meets the requirements of BREEAM-SE.

In some cases, the municipal planning consultation within the detailed planning process can be used as a forum for dialogue with third parties: see alternative 1 below.

What type of project should be certified?

1. Building (to be certified) in an area where a new detailed plan is produced and where the current developer participates in the planning process.
2. Building (to be certified) within real estate property that was acquired after the detailed plan was produced. The detailed planning process has already been completed and a new detailed plan is available.
3. Building (to be certified) within real estate property that is not subject to a detailed planning process but rather is covered by an older detailed plan or for building within unplanned land.

For option 1

Provided that the building to be certified is within an area that is part of an ongoing detailed planning process, the municipal planning consultation (consultation meeting or meeting during the review phase) can be used in parallel, i.e. simultaneously, as a forum for dialogue with third parties (criterion 5) to also raise the mandatory issues in CN3. It is important in this forum that it is clear to the municipality and participants in the consultation meeting that the developer, as the sender, is using the opportunity for dialogue about their project with third party stakeholders and that it is
clear to participants precisely who it is they are providing their views to. Even when the project’s
dialogue with third parties takes place in connection with the municipal consultation, the project
must ensure that relevant third party stakeholders are aware of, invited to, and know what issues
are to be raised at the meeting.

The developer or representative of the developer who in this case uses the municipal consultation
as a forum for third-party dialogue shall independently summarize the dialogue that dealt with the
building in question for the certification. The project can use the municipality’s compilation of views
where relevant but must ensure that even views on the issues that are not included the municipal
consultation are included in the project’s compilation of views expressed in the dialogue with third
parties.

For options 2 and 3

The developer or its representative is responsible for inviting a representative advisory group from
the existing local community to participate in the dialogue with third parties. The dialogue with
third parties cannot be coordinated with the municipal planning consultation.
Aim

To deliver whole life value by encouraging the use of life cycle costing to improve design, specification, through-life maintenance and operation, and through the dissemination of capital cost reporting to promote economic sustainability.

Assessment criteria

This issue is split into three parts:

- Elemental life cycle cost (2 credits)
- Component level life cycle cost (1 credit)
- Capital cost reporting (1 credit)

The following is required to demonstrate compliance:

Two credits – Elemental life cycle cost (LCC)

1. An outline, entire asset elemental LCC1 plan has been carried out at the Concept Design stage (tidigt programhandlingsskede) together with any design option appraisals in line with ISO 15686-5:2017.
2. The outline LCC plan:
 2.a Provides an indication of future replacement costs over a period of analysis as required by the client (e.g. 20, 30, 50 or 60 years)
 2.b Includes service life, maintenance and operation cost estimates.
3. Demonstrate, using appropriate examples provided by the design team, how the elemental LCC plan has been used to influence building and systems design, and specification to minimise life cycle costs and maximise critical value.

One credit – Component level LCC options appraisal

4. A component level LCC options appraisal has been developed by the end of Process Stage 4 (equivalent to Technical Design Stage) in line with ISO 15686-5:2017, and includes the following component types (where present):
 4.a Envelope, e.g. cladding, windows, or roofing
 4.b Services, e.g. heat source, cooling source or controls
 4.c Finishes, e.g. walls, floors or ceilings
 4.d External spaces, e.g. alternative hard landscaping, boundary protection.
5. Demonstrate, using appropriate examples provided by the design team, how the component level LCC options appraisal has been used to influence building and systems design, and specification to minimise life cycle costs and maximise critical value.

One credit – Capital cost reporting

6. Report the capital cost for the building, via the BREEAM-SE Assessment Scoring and Reporting tool.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Elemental life cycle cost, capital cost reporting and maintenance strategy, criteria 1 to 3 and 6
Both options: All assessment criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component level LCC plan, criteria 4 to 5
Both options: The plan must include all component types to be installed by the developer.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Appropriate examples.
See criterion 3 and 5.</td>
<td>The options selected to demonstrate how life cycle costs have been minimised and critical value maximised must be appropriate in terms of their relative impact on project costs, future building maintenance burden and size (volume or area) and the stage of the project. At stage 2, when considering the outputs from the elemental LCC plan, examples could be in the form of elemental appraisals (where appropriate), evolutions in concept design (tidigt programhandlingsskede) to reduce maintenance or replacement costs or contracts for further elemental analysis. At stage 4, when considering the outputs from the component level options analysis, examples are likely to be in the form of component specifications coupled with justifications for their selection (i.e., how they reduce life cycle costs and maximise critical value).</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Predefined specifications</td>
<td>Where the building is constructed to a predefined standard specification, the LCC elemental plan for this specification may be used to help demonstrate compliance.</td>
</tr>
</tbody>
</table>
CN3.2 Capital cost reporting final information not available

At the design stage of assessment, where the final information is not available, the credit can be awarded where the client provides the predicted capital cost, including contingencies, and commits to providing this information for the final stage of assessment. At the final stage, if the final capital cost is not known, the client’s or cost consultant’s best estimate should be provided.

This data will be used to inform future BREEAM-SE performance benchmarking and will be anonymised.

CN3.3 Independent assessment of parts

All three parts can be awarded independently from one another. For example, the project team can still target the one credit for the component level LCC option appraisal at stage 4 even if they have not been awarded the first two credits at stage 2 for developing an elemental life cycle cost plan. The capital cost reporting credit can also be awarded independently from the other two parts.

CN3.4 Component level LCC options appraisal – assessing types 4.a – 4.d

The component level LCC options appraisal should review all of the component types listed, 4.a–4.d (where present). However not every single example cited under each component need be considered; only a selection of those most likely to draw valued comparisons. This is to ensure that a wide range of options are considered and help focus the analysis on components which would benefit the most from appraisal.

CN 3.5 Critical value

Critical value aims to maximise whole life value of the building based on client requirements, and differs from minimising life cycle cost. This is a more specific analysis of how the building’s ongoing maintenance and operation can impact business needs. For instance:

- Where any disruption to business is costly, a specification with long periods between maintenance cycles and reduced maintenance time may be desirable.
- Where maintaining aesthetics are important, a maintenance cycle may be based on aesthetic upkeep rather than functional lifespan.
- Where maximum recyclability and re-usability is important, an alternative, costlier specification may be required.
- Where capital costs are constrained, the specification with the lowest LCC may not be affordable, and instead, the best available option within the budget is chosen.

CN3.6 Elemental LCC plan study period

The study period should ideally be agreed by the client, in line with the design life expectancy of the building. However, where the life expectancy of the building has not yet been formally agreed (due to the early stages of the design process), the default design life of 60 years should be used for modelling purposes.

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>Elemental LCC plan.</td>
<td>As per interim design stage.</td>
</tr>
<tr>
<td>4–5</td>
<td>Component level LCC options appraisal.</td>
<td>As per interim design stage.</td>
</tr>
<tr>
<td>6</td>
<td>Predicted capital costs via the BREEAM-SE scoring and reporting tool.</td>
<td>Capital costs via the BREEAM-SE scoring and reporting tool.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Component level LCC options appraisal

A component level LCC plan is commonly used for cost planning specification choices of systems or component levels during design development. Component level LCC appraisal for service life planning requires the environment of the building and other local conditions to be identified, and the fundamental requirements to be met in planning the service life of the building. Decisions should be made on:

- The likely design life of the building (rather than the contractual design life)
- Minimum functional performance criteria for each component over the building’s design life
- Components that must be repairable, maintainable or replaceable within the design life of the building. Only the key differentiators between components and systems need to be comparatively modelled.

Elemental LCC plan

An Elemental LCC plan is a report on the whole building broken down to give costs for each element. It would normally be used to identify cost related opportunities with the final version incorporating decisions made on previous versions and options. Or it might be prepared just once simply to inform - on the running costs for example. It may contain some options that have been considered, such as two different designs of the energy system for the asset, but that would only be part of it. This is commonly used for developing solutions at project level during option appraisals. Costs are normally at building elemental level on the entire asset. Information may be a mix of typical benchmark costs for key elements, comparative cost modelling or approximate estimates. It is expressed as cost per square metre of gross internal floor area (bruttoarea/BTA) and presented for elemental analysis, aligned to the level of capital cost plans.

Life cycle cost (LCC)

The cost of an asset, or its parts throughout its life cycle, while fulfilling the performance requirements; a methodology for systematic economic evaluation of life cycle costs over a period of analysis, as defined in the agreed scope.

Predicted capital cost

The capital cost for the building includes the expenses related to the initial construction of the building:

- Construction, including preparatory works, materials, equipment and labour
- Site management
- Construction financing
- Insurance and taxes during construction
- Inspection and testing
Costs relating to land procurement, clearance, design, statutory approvals and post occupancy aftercare should not be included.

Other information

Capital cost reporting

The lack of data relating to capital and life cycle costs and benefits arising from more sustainable building design presents a major barrier to take-up of more sustainable solutions. This issue seeks to encourage the sharing of data to break down these barriers and ensure that BREEAM-SE continues to encourage cost effective and financially beneficial solutions. This information is collected to assist research into the cost and savings of developing sustainable or BREEAM-SE-assessed buildings. This is used to inform the business case for sustainability and the ongoing development of BREEAM-SE. All data submitted will be treated as confidential and will only be used anonymously. Only SGBC and BRE will have access to project identifiable data.

Standardised method for life cycle costing (SMLCC) for construction

ISO 15686-5:2017 describes the standardised method for life cycle costing (SMLCC) for construction procurement. The objectives of this guide are to provide the following:

1. LCC practitioners with a standardised method of applying life cycle costing, applicable to the construction industry and to the key stages of the procurement process.
2. Process mapping the LCC stages - to help structure how to plan, generate, and interpret and present the results for a variety of different purposes and levels of LCC planning.
3. Instructions on how to define the client’s specific requirements for life cycle costing and the required outputs and forms of reporting - and to decide on which method of economic evaluation to apply.
4. Simplification and demystification - by providing practical guidance, instructions and definitions, together with informative worked examples on how to undertake life cycle costing (for construction).
5. An industry accepted methodology to facilitate a more accurate, consistent and robust application of LCC estimation and option appraisals, thereby creating a more effective and robust basis for LCC analysis and benchmarking. ISO 15686-5:2017 also seeks to help eliminate confusion over scoping and terminology and to address concerns over the uncertainty and risks that are undermining confidence in life cycle costs used for construction procurement.

When to undertake life cycle costing

Life cycle costing is relevant throughout the building or constructed asset’s life cycle, in particular during the project planning, design and construction and also during the in-use phases. (For further information please refer to ISO 15686-5.)
Man 03 Responsible construction practices

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage construction sites which are managed in an environmentally and socially considerate, responsible and accountable manner.

Assessment criteria

This issue is split into four parts:

- Environmental management (1 credit)
- BREEAM-SE AP (1 credit)
- Considerate construction (up to 2 credits)
- Monitoring of construction site impacts (2 credits)

The following is required to demonstrate compliance:

Prerequisite – Legally harvested and traded timber

1. All timber and timber-based products used during the construction process of the project, but not integrated in the building are ‘Legally harvested and traded timber’ (see Relevant definitions).
 Note: For other materials there are no prerequisite requirements at this stage.

Prerequisite – National health and safety legislation

2. All national health and safety legislation and regulations for construction sites are considered and implemented during (refer to CN3.5 and CN3.6):
 2.a The design of the asset; to minimise health and safety risks
 2.b Pre-construction work planning and organisation; to collate health and safety information from all relevant stakeholders (refer to Relevant definitions)
 2.c Site set-up; to implement health and safety features
 2.d Construction; to manage, monitor and report on the health and safety of construction site staff.
 2.e A work environment plan, as prescribed by the Swedish Work Environment Authority, has been drawn up before the construction site is established. A copy of the work environment plan is posted on a notice board on the construction site.
 2.f A prior notification is submitted to the Swedish Work Environment Authority before work begins. A copy of the prior notification is posted on a notice board on the construction site.
 2.g Safety and environmental inspections are performed as prescribed by the Swedish Work Environment Authority.
One credit – Environmental management

3. The principal contractor operates an environmental management system (EMS) covering their main operations. The EMS must be third party certified to ISO 14001/EMAS, Miljödiplomering, BF9K, BKMA or an equivalent standard.

4. Implement best practice pollution prevention policies and procedures on site, demonstrated through the project team completing the checklist outlined in Table 10. To demonstrate compliance, not all actions need to be achieved; however the assessor and project team must demonstrate that the intent of each section (i.e. air quality) has been met.

One credit – BREEAM-SE AP (construction)

5. A BREEAM-SE AP is appointed to monitor the project to ensure ongoing compliance with the relevant sustainability performance and process criteria, and therefore BREEAM-SE targets, during the construction, handover and close out work stages. To do this the BREEAM-SE AP will ideally be site-based or will visit the site regularly to carry out spot checks, with the relevant authority to do so, and will require action to be taken to address shortcomings in compliance. As an alternative, an assigned individual in the construction management team which is site based, is responsible for parts of the monitoring and reports regularly to the BREEAM-SE AP. The assigned individual in the construction management team must be demonstrated to be a 3rd party or, if from the same organisation, independent from the on-site team. The BREEAM-SE AP and/or the assigned individual will monitor site activities with sufficient frequency (see compliance note CN3.2) to ensure that risks of non-compliance are minimised. They will report on progress at relevant project team meetings, including identifying potential areas of non-compliance and any action needed to mitigate.

6. The defined BREEAM-SE performance target forms a requirement of the principal contractor’s contract (see Man 01 Project brief and design: CN3.2 and Man 01 Project brief and design: Relevant definitions).

7. To achieve this credit at the final post-construction stage of assessment, the BREEAM-SE-related performance target for the project must be demonstrably achieved by the project. This is demonstrated via the BREEAM-SE Assessor’s final post-construction stage assessment report.

Up to two credits – Considerate construction

8. For single dwellings:

8.a One credit can be awarded where an individual is responsible for implementing and maintaining the following considerate construction practices throughout the works stage (see Relevant definitions):

8.a.i Keeping the site clean and tidy
8.a.ii Reducing impacts on the community through community and neighbour engagement
8.a.iii Continuous improvements in safety
8.a.iv Commitments to respect and ensure fair treatment of all workers
8.a.v Suitable site facilities for operatives and visitors.

8.b Two credits can be awarded where the contractor achieves six items in each of the four sections within Checklist A1
9. For all other building types, the BREEAM-SE credits can be awarded as follows:

 9.a One credit where the principal contractor achieves six items in each of the four sections within Checklist A1

 9.b Two credits where the principal contractor achieves all items in each of the four sections within Checklist A1 AND the contractor’s performance has been confirmed by independent assessment and verification.

Up to two credits – Monitoring of site impacts

10. Responsibility has been assigned to an individual for monitoring, recording and reporting energy use, water use and transport data (where measured) resulting from all on site processes (and dedicated off-site monitoring) throughout the programme. To ensure the robust collection of information, this individual must have the appropriate authority and responsibility to request and access the data required. Where appointed, the BREEAM-SE AP could perform this role.

First monitoring credit – Utility consumption Energy use

11. Criterion 10 is achieved.

12. Monitor and record data of the site energy use in kWh (and where relevant, litres of fuel used) as a result of the use of construction plant, equipment (mobile and fixed) and site accommodation (as relevant to the project type).

13. Report the total carbon dioxide emissions (total kg CO₂/project value) from the construction process via the BREEAM-SE Assessment Scoring and Reporting tool (for the purposes of potential future BREEAM-SE performance benchmarking).

Water use

14. Criterion 10 is achieved.

15. Monitor and record data on the principal constructor’s and subcontractors’ potable water use (m³) arising from the use of construction plant, equipment (mobile and fixed) and site accommodation (as relevant to the project type, see Compliance notes).

16. Using the collated data report the total net water use (m³), i.e. use minus any recycled water use from the construction process via the BREEAM-SE Assessment Scoring and Reporting tool (for the purposes of potential future BREEAM-SE performance benchmarking).

Second monitoring credit – Transport of construction materials and waste

17. Criterion 10 is achieved.

18. Monitor and record data on the transport movements and impacts resulting from delivery of the majority construction materials to the site and construction waste from the site. As a minimum this must cover:

 18.a Transport of materials from the factory gate to the building site, including any transport, intermediate storage and distribution, see Relevant definitions.

 18.b The scope of this monitoring must cover the following as a minimum:

 18.b.i Materials used for major building elements, (i.e. those defined as mandatory in the Mat 01 calculator), including insulation materials

 18.b.ii Where within scope, ground works and landscaping materials.
18.c Transport of construction waste from the construction gate to waste disposal processing or the recovery centre gate. The scope of this monitoring must cover the construction waste groups outlined in the project’s waste management plan.

19. Using the collated data, report separately for materials and waste, the total transport-related carbon dioxide emissions (kg CO$_2$eq) via the BREEAM-SE Assessment Scoring and Reporting tool (for the purposes of potential future BREEAM-SE performance benchmarking).

Checklists and tables

Checklist A1 and Table 10.

The project team are to complete checklist below. The assessor and project team must ensure that the intent of each section is met through actions appropriate to the site.

Table 10: Checklist of actions to minimise air and water pollution during construction works

<table>
<thead>
<tr>
<th>Section</th>
<th>Action</th>
<th>Completed (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise and vibration</td>
<td>Intent: To minimise the impact of noise and vibration in the local community.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Plan the noisiest activities for times that will result in the least disturbance to the local community.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Use noise control devices, e.g. temporary noise.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Use barriers or deflectors for impact and blasting activities.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Avoid or minimise transport through community areas.</td>
<td></td>
</tr>
<tr>
<td>Air quality</td>
<td>Intent: To prevent dust and other air pollution on site and in the local community.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Minimise dust from materials by using covers, storage, control equipment, and increasing moisture content.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Minimise dust from vehicle movements, using water sprays if appropriate.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Burning of materials on site is not permitted</td>
<td></td>
</tr>
<tr>
<td>Water run-off management</td>
<td>Intent: To prevent water pollution from on site activities.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Prepare a drainage plan and mark manholes or water entry points to highlight risk areas. Note: this plan may change as the works progress.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Where possible or appropriate, schedule works to avoid heavy rainfall periods (i.e. during the dry season) and modify activities during extreme rainfall and high winds.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Contour and minimise length and steepness of slopes.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Mulch to stabilise exposed areas or line steep channels or slopes, e.g. using jute matting.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Revegetate areas promptly.</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Reduce or prevent off-site sediment transport through the use of settlement ponds, silt fences, or water treatment.</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Segregate or divert clean water run-off to prevent it mixing with water with a high solids content (therefore minimising the amount of water requiring treatment).</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Provide adequate drainage systems to minimise and control infiltration.</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Carry out any activities that could cause pollution in designated, bunded areas away from rivers, boreholes or other water courses.</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Action</td>
<td>Completed (Y/N)</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Hazardous materials</td>
<td>Intent: To prevent hazardous materials polluting local water courses.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Provide adequate secondary containment for fuel storage tanks and for the temporary storage of other fluids such as lubricating oils and hydraulic fluids.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Train workers on the correct transfer and handling of fuels and chemicals, and the response to spills.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Take measures to minimize risk for contamination of soil and water due to spill or leakage from refuelling areas and other fluid transfer areas. Approved measures: impervious surfaces, sand-/geotextile boxes or portable dense vessels to collect possible leakage</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Provide portable spill containment and clean-up equipment on site and train staff to use it.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Provide adequate sanitation facilities serving all workers.</td>
<td></td>
</tr>
</tbody>
</table>

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2.1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2.2</td>
<td>BREEAM-SE AP for single dwellings</td>
<td>For single dwellings a BREEAM-SE Assessor can act as the BREEAM-SE AP. In this situation it will still be necessary to manage any conflicts of interest that could arise.</td>
</tr>
<tr>
<td>CN3</td>
<td>Site timber and reusable formwork. See criterion 1.</td>
<td>Reusable timber formwork itself does not automatically comply. All timber used in the manufacture of the formwork must be either initially reclaimed, or 'legally harvested and traded' (see Mat 03 Responsible sourcing of construction products: Relevant definitions).</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Environmental management system (EMS)</td>
<td>The EMS can be developed following guidance in the WRAP (Waste Resources Action Programme) publication ‘Your Guide to Environmental Management Systems’, which can be downloaded from the WRAP website. While a UK based document, this guide follows the requirements of ISO 14001 and EMAS; however certification against ISO 14001, EMAS, Miljödiplomering, BF9K, BKMA or the equivalent standard will be required to demonstrate compliance with criterion 3.</td>
</tr>
</tbody>
</table>
Ref | Terms | Description
--- | --- | ---
CN3.2 | Frequency of site monitoring. See criterion 5. | In this context, visits should occur at key stages of the construction process, at times where:
- Works can be observed before they are covered up or new works or trades start.
- Where significant risks of conflicts or errors could occur
- Timing is critical to demonstrating compliance
- Key evidence is required to be produced at specific times including, but not limited to, photographic, delivery notes and other documentary evidence
- Different trades and systems come together and one could harm the integrity or compliance of another system's performance against BREEAM-SE requirements.

CN3.3 | Independent assessment and verification | An assessment of the site activities against Checklist A1 which is carried out by an individual who can demonstrate their independence from the project delivery, i.e. someone not employed by (or working under a contract for) the contractor’s organisation.

The individual must have at least five years’ experience working within the construction industry, either as a contractor or as part of a design team. Where the assessor meets the criteria above, they can fulfil this role.

CN3.4 | Compliance with Considerate Contractor Checklist | In instances where items in Checklist A1 are not relevant due to the scope of works on site, the assessor should seek guidance from SGBC on the appropriate number of items required.

CN3.5 | BAS-P & BAS-U | Appointing Construction Work Environment Coordinators, i.e. BAS-P and a BAS-U, as prescribed in the Work Environment Act is sufficient to demonstrate compliance with criteria 2 a – d.

CN3.6 | Construction site boundaries | All relevant laws, rules and regulations concerning third party should be taken into account in the design of the construction site boundaries, such as roadblocks, diversions and obstacles that might have an impact on the traffic flow around the construction site. See also “Arbete på väg” (Swedish guidelines for roadworks) and municipal regulations for roadworks.

CN3.7 | Water use | Where there is no water use associated with construction plant, equipment (mobile and fixed) and site accommodation, the requirements for monitoring water use is not required.

Methodology

None
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| All | Relevant section or clauses of the building specification or contract. OR A signed and dated letter of commitment to meet the relevant criteria. | Name of the individuals responsible for monitoring, recording and reporting data resulting from all construction processes. Summary details of the monitoring and data gathering mechanism, protocols or system used to collate and process the relevant data. Collated construction phase data or information as follows:
 • Total site energy use by fuel type or total carbon dioxide emissions Total site net water use (m³)
 • For both materials and waste, the total fuel consumption by type or total carbon dioxide emissions plus total distance travelled (km).
 • For certified and non-certified site timber, evidence as required for BREEAM-SE issue Mat 03 Responsible sourcing of construction products.
 A copy of the principal contractors EMS/EMAS certificate.
 Copies of the documented procedures used on site for working to best practice pollution management guidelines.
 A letter from the principal contractor confirming:
 • Procedures for pollution management and mitigation were implemented
 • Name or job title of the individual responsible for monitoring and managing construction site impacts throughout the project. |

Additional information

Relevant definitions

BREEAM-SE Advisory Professional (AP)
Refer to Man 01 Project brief and design.

Construction processes
The construction process includes the enabling works, assembly, installation and disassembly activities necessary for servicing the construction and completion of a new building.

Dedicated off-site manufacturing or fabrication
Production of a component or material carried out in an off-site manufacturing or processing facility specifically set up for a development project.
Factory gate

For the purposes of this issue, the factory gate is defined as being the product manufacturer gate (i.e., where manufacture and pre-assembly finishes and the material is in its final product form).

Examples might include:

1. Steel, concrete or glass manufacturers for cladding, windows and beams etc.
2. Quarry gate for aggregate and sand
3. Concrete plant for concrete
4. Saw mill and timber processing plant for timber.

Legally harvested and traded timber

Refer to Mat 03 Responsible sourcing of construction products.

Principle contractor

The company that has overall responsibility for overseeing the construction stage of the project, whether that is a contractor or managing agent.

Other information

CO₂ reporting protocols

At the time of publication, the following guidance is available for CO₂ measuring protocols.

1. Encord: They have launched a CO₂ reporting protocol.
2. GHG (Greenhouse gas) Protocol

Considerate construction practices

The following are examples of considerate construction practices that provide possible ways of meeting the criteria for single dwellings. Further examples can be found at the Considerate Contractors Scheme website under Examples of Good Practices.

1. Keeping the site clean and tidy:
 a. Ensure there is no loose materials or debris lying around the site including the perimeter
 b. Vehicles are regularly checked for cleanliness
 c. Implement a ‘Tidy Friday’ initiative.
2. Reduce the impacts to the community:
 a. Schedule the timing of deliveries to the site to avoid disturbance to local residents
 b. Ensure that any noisy work is carried out at agreed times with adjoining neighbours
 c. Record car registration numbers of all operatives in the event that a complaint was made with regard to nuisance parking.
3. A drive for continuous improvements in safety:
 a. Toolbox talks on safety matters
 b. Passport or helmet stickers for operatives who have successfully completed health and safety training
 c. Near miss reporting procedure.

4. A commitment to respect and provide fair treatment of all workers:
 a. A ‘Respect for people’ wall chart displayed, recording satisfaction levels with welfare and other relevant topics
 b. Questionnaires issued to all operatives to establish what can be done to improve working conditions
 c. Information on dealing with abusive behaviour.

5. Provide suitable site facilities:
 a. Suitable toilet facilities for male and female operatives
 b. Rest areas for operatives to have breaks away from work areas
 c. Suitable first aid facilities.
Man 04 Commissioning and handover

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Aim

To encourage a properly planned handover and commissioning process that reflects the needs of the building occupants.

Assessment criteria

This issue is split into four parts:

- Commissioning and testing schedule and responsibilities (1 credit)
- Commissioning building services (1 credit)
- Testing and inspecting building fabric (1 credit)
- Handover (1 credit)

The following is required to demonstrate compliance:

One credit – Commissioning and testing schedule and responsibilities

1. There is a schedule of commissioning and testing that identifies the appropriate commissioning required for the scope of works. The schedule includes a suitable timescale for commissioning and recommissioning of building services and control systems, as well as testing and inspecting the building fabric.

2. The schedule will identify the appropriate standards that all commissioning activities will be conducted in accordance with. This will include national best practice commissioning codes or other appropriate standards, where applicable. Where a building management system (BMS) is specified, refer to compliance note CN3.1 on BMS commissioning procedures. This will include “Swedish best practice of commissioning with Industry practice contract forms AB and ABT and AMA (general material and work description)”

3. An appropriate project team member is appointed to monitor and programme pre-commissioning, commissioning and testing. Where necessary, this will include recommissioning activities on behalf of the client.

4. The principal contractor accounts for the commissioning and testing programme, responsibilities and criteria within their budget and the main programme of works. The programme shall allow for the required time to complete all commissioning and testing activities prior to handover.

One credit – Commissioning building services

5. The commissioning and testing schedule and responsibilities credit is achieved.
6.a For complex building services and systems, a specialist commissioning manager is appointed during the design stage (by either the client or contractor) with responsibility for:

6.a.i Undertaking design reviews and giving advice on suitability for ease of commissioning
6.a.ii Providing commissioning management input to construction programming and during installation stages
6.a.iii Management of commissioning, performance testing and handover or post-handover stages.

6.b For simple building services, this role can be carried out by an appropriate project team member (see criterion 3), provided they are not involved in the general installation works for the building services systems.

One credit – Testing and inspecting building fabric

7. The commissioning and testing schedule and responsibilities credit is achieved.

8. The integrity of the building fabric, including continuity of insulation, avoidance of thermal bridging and air leakage paths is quality assured through completion of post-construction testing and inspection. Airtightness test and inspection have been or will be undertaken according to SS-EN ISO 9972:2015, Thermal performance of buildings (Determination of air permeability with fan pressurization method), with maximum air leakage at 50 Pa of 0.40 l/(s, m²), where the area is the building envelope surface area according to the definition in BBR of Aom. In order to detect any undesired air leakage through the fabric, undesired thermal bridges and deficiencies in thermal insulation an adequate thermographic survey of the building fabric (once construction is complete) has been or will be carried out in accordance with SS-EN 13187, Thermal performance of buildings - Qualitative detection of thermal irregularities in building envelopes - Infrared method. The survey and testing is undertaken by a suitably qualified professional (see Relevant definitions) in accordance with the appropriate standard.

9. Any defects identified in the site inspection, thermographic survey and the airtightness testing reports are rectified prior to building handover and close out. Any remedial work must meet the required performance characteristics for the building or element as defined at the design stage.

One credit – Handover

10. A building or home user guide is developed, prior to handover for distribution to the building occupiers and premises managers (see Relevant definitions). A draft copy is developed and discussed with users first (where the building occupants are known) to ensure the guide is most appropriate and useful to potential users.

11. A training schedule is prepared for building occupiers or premises managers, timed appropriately around handover and proposed occupation plans, which includes the following content as a minimum:

11.a The design intent of the building
11.b The available aftercare provision and aftercare team main contacts, including any scheduled seasonal commissioning and post occupancy evaluation
11.c Introduction to, and demonstration of, installed systems and key features, particularly
BMSs, controls and their interfaces, to ensure they are fully conversant with the detailed operation of the building

11.d Introduction to the building user guide and other relevant building documentation, e.g. design data, technical guides, maintenance strategy, operations and maintenance (O&M) manual, commissioning records, log book etc.

11.e Maintenance requirements, including any maintenance contracts and regimes in place.

Checklists and tables

Checklist A2.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Commissioning and testing schedule and responsibilities, commissioning building services, criteria 1 to 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell only: These criteria are not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell and core: With regard to the scope of services being specified or installed, all criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing and inspecting building fabric, criteria 7 to 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell only: criteria 8 and 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell and core: All criteria relevant to the building type and function apply</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handover, criteria 10 and 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell only: These criteria are not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell and core: Criterion 10 only is applicable. The guide includes, as far as possible, all relevant sections regarding the services and fabric installed. On completion of works the building owner, agent or user hands it over to the fit-out contractor, who can then complete the relevant sections based on the fit-out strategy.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single dwellings</td>
<td>Commissioning and testing schedule and responsibilities, commissioning building services, criteria 1 to 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Both options: These criteria do not apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing and inspecting building fabric, criteria 7 to 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Both options: These criteria do not apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handover, criteria 10 and 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Both options: Criterion 10 only is applicable.</td>
</tr>
<tr>
<td>Ref</td>
<td>Terms</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CN2.1</td>
<td>Applicable assessment criteria – Multiple dwellings</td>
<td>Commissioning and testing schedule and responsibilities, commissioning building services, criteria 1 to 6
Partially fitted: With regard to the scope of services being specified or installed, all criteria relevant to the building type and function apply.
Fully fitted: All criteria relevant to the building type and function apply.
Testing and inspecting building fabric, criteria 7 to 9
Both options: All criteria relevant to the building type and function apply.
Handover, criteria 10 and 11
Partially fitted: The Home user guide includes, as far as possible, all relevant sections regarding the services and fabric installed.
Fully fitted: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Process-related equipment. See criterion 2.</td>
<td>Any process or manufacture-related equipment specified as part of the project may be excluded from the assessment of the commissioning credits, except where they form an integral part of the building HVAC services, such as some heat recovery systems.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>BMS commissioning procedures. See criterion 2.</td>
<td>Where a BMS is specified, the following commissioning procedures must be carried out:
1. Commissioning of air and water systems is carried out when all control devices are installed, wired and functional
2. In addition to air and water flow results, commissioning results include physical measurements of room temperatures, off-coil temperatures and other key parameters, as appropriate
3. The BMS or controls installation should be running in auto with satisfactory internal conditions prior to handover
4. All BMS schematics and graphics (if BMS is present) are fully installed and functional to user interface before handover
5. The occupier or facilities team is fully trained in the operation of the system.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Scope of the thermographic survey</td>
<td>The thermographic survey must cover a satisfactory number of treated areas (e.g. a typical story and typical constructions for recurring stories and constructions).</td>
</tr>
</tbody>
</table>
Refer to the requirements for a thermographic survey AND air tightness testing. The requirement for this credit is to ensure continuity of insulation, and avoidance of thermal bridging and air leakage paths. How this is achieved is up to the judgment of the suitably qualified professional.

Therefore there is no requirement to carry out both, unless this has been deemed necessary by a suitably qualified professional.

Assets aligning with the taxonomy criteria for Substantial contribution to Climate change, and are larger than 5,000 m², must undertake both thermographic survey and airtightness testing. As an alternative, where robust and traceable quality control processes are in place during the construction process this is acceptable as an alternative to thermal integrity testing.

For residential buildings, the testing is made for a representative set of dwelling/apartment types.

CN3.5 Remediation work

Any remediation work undertaken, resulting from a thermographic survey and airtightness test of the building, should be robust and durable, i.e. the remedial work must have the same performance characteristics and life expectancy of the surrounding elements. Where any defects are identified that relate to aspects that are outside of the scope of refurbishment works, these do not need to be remediated, e.g. where testing highlights that glazing has defects, but was not included in the scope of refurbishment works.

Residential – Partially fitted and fully fitted

CN3.6 Thermographer qualification

The thermographic survey is normally undertaken by a suitably qualified professional classified and qualified as a Class/Category II in thermography (see Relevant definitions). Where a Class/Category II thermographer is not available at the site, the survey may be undertaken by a Class/Category I thermographer and then the images interpreted by a Class/Category II thermographer.

General

CN4 Distribution of Home user guide for residential buildings

The Home user guide must be supplied to all dwellings in a development. Where the development is divided into multiple dwellings and whenever there are communal systems and features in place, one central building user guide should be provided covering the scope of the building owner or manager-controlled areas and responsibilities. A separate building user guide should be provided for each individual dwelling with content appropriate to the residents and their interaction with the building and its systems.

Methodology

None

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissioning and testing schedule and responsibilities, commissioning building services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–6</td>
<td>Project budget – for commissioning. Programme of works – Time schedule for the project including commissioning. Appointment letter or commissioning responsibilities schedule. Relevant section or clauses of the building specification or contract – AMA description or AB/ABT contract. Main contractor’s programme or equivalent evidence – Implementation description. Commissioning schedule.</td>
<td>Commissioning records or reports. Main contractor’s programme or equivalent evidence – Implementation description. Commissioning schedule.</td>
</tr>
</tbody>
</table>
Criteria

<table>
<thead>
<tr>
<th>Testing and inspecting building fabric</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>7–9</td>
<td>Drawings clearly marked with the line of the thermal insulation barrier AND Confirmation that these details have been checked to verify the continuity of the thermal barrier, as shown in the inspection plan. AND Evidence confirming that standards and requirements are met: The assessment of the building envelope from project planning and a report describing the method for the air tightness testing and thermography. OR Verification that the requirements will be met before the completion of the construction.</td>
<td>Thermographic survey or air leakage report. Thermographic qualification (if applicable) OR Evidence of inspection to confirm continuity of the thermal barrier during the construction process. Confirmation of remedied defects identified by either the thermographic survey or air tightness testing.</td>
</tr>
</tbody>
</table>

Handover

| **10–11** | Relevant section or clauses of the building specification or contract. **OR** A letter of commitment from the client or developer. | A copy of the building or home user guide. Written confirmation from the design team or client that the guide has been, or will be, distributed to the building’s owner, tenants or fit-out contractor (for completion), as appropriate. Details of how building, site and local amenity related information is to be made accessible to building users. Copy of the training schedule, with confirmation that it was (or will be) issued to the relevant people at the required time. |

Additional information

Relevant definitions

AMA (general material and work description)

AMA is used to effectively document and communicate through the entire construction process. In RA, advice and instructions, you will find comments on the text of the AMA and information on how the description should be designed to be sufficiently complete and calculable. AMA is divided into a number of different sections or areas of expertise.

In chapter Y, commissioning and handover documents are described.

R1 – guidelines specific indoor climate, VVS Tekniska Föreningen.
Building user guide

Dedicated building or site-specific guidance for the non-technical building user. The purpose of the guide is to help building users access, understand and operate the building efficiently and in a manner in keeping with the original design intent. A building user guide should be written so that it will provide easily accessible and understandable information relevant to the following stakeholders:

- The building’s staff (or where relevant, residents)
- The non-technical facilities management team or building manager
- Other building users, e.g. visitors, community users.

The content of the guide will be specific to the building type and end users, but broadly should include information on the following:

- Overview of the building and its environmental strategy, e.g. energy or water or waste efficiency policy or strategy and how users should engage with and deliver the policy or strategy
- Building services overview and access to controls, e.g. where to find them, what they control, how to operate them effectively and efficiently etc.
- Pre-arrival information for visitors, e.g. access and security procedures and provisions
- Provision of, and access to, shared facilities
- Safety and emergency information and instructions
- Building related operational procedures specific to the building type or operation, e.g. laboratories
- Building related incident reporting and feedback arrangements
- Provision of, and access to, transport facilities, e.g. public transport, cyclist facilities, pedestrian routes etc.
- Provision of, and access to, local amenities
- Re-fit, refurbishment and maintenance arrangements and considerations
- Links, references and relevant contact details.

There is no requirement on the format the building user guide should take.

Complex installation systems

These include, but are not limited to, air-conditioning, comfort cooling, mechanical ventilation, displacement ventilation, complex passive ventilation, BMS, renewable energy sources, microbiological safety cabinets and fume cupboards, cold storage enclosures and refrigeration plant.

Home user guide

The aim of the Home user guide is to ensure the appropriate provision of guidance for the non-technical building user, so they can access, understand and operate the building efficiently and in a manner in keeping with the original design intent.
The guide should provide information relevant to the following stakeholders:

1. The building’s residents
2. The non-technical facilities management team or building manager
3. Other building users, e.g. visitors or community users.

The section titles of the Home user guide are provided below. For further details on the scope or content of the guide refer to Checklist A2.

Part 1 – Operational issues

1. Environmental strategy, design and features
2. Energy
3. Water use
4. Recycling and waste
5. Links, references and further information
6. Provision of information in alternative formats.

Part 2 – Site and surroundings

1. Recycling and waste
2. Sustainable (urban) drainage systems (SuDS)
3. Public transport
4. Local amenities
5. Responsible purchasing
6. Emergency information
7. Links, references and further information.

Main contractor

The term “main contractor” used in BREEAM-SE refers to the party that is responsible for the construction site activities. The “main contractor” is appointed by the client to control the construction phase of any project involving more than one contractor. If the client does not appoint a “main contractor”, then the client shall be considered to be the “main contractor” (in addition to being the client) for the purposes of the BREEAM assessment.

Operations and maintenance manual

Refer to AMA’s “Instructions for operation and maintenance 3 (2017), Svensk Byggtjänst”
Suitably qualified professionals – thermographic survey and airtightness testing

The survey and testing is undertaken by a suitable qualified expert, e.g. holding a diploma or certified person and/or company accredited for performing tests according to SS-EN ISO 6781-3:2015 and SS-EN 13187 respectively. The required diplomas should be given. The survey and testing shall also be performed according to the new version (2017) of Swedish industry standard ByggaL (http://byggal.se/) that contains additional specifications on the measurement of the building airtightness and the thermographic survey. To be a qualified tester, the tester shall also have good knowledge of ByggaL.

Other information

Thermal bridging assessments

It is good practice to carry out thermal bridging assessments at the design stage. This is reflected in the Ene 01 Reduction of energy use issue, so no additional credit is offered within this issue for thermal bridging assessments. However, good thermal bridging design and assessment will contribute to successful building fabric testing results and the associated credit.
Man 05 Aftercare

Number of credits available	Minimum standards
3 | Yes

Aim

To provide post-handover aftercare to the building owner or occupants during the first year of occupation to ensure the building operates and adapts, where relevant, in accordance with the design intent and operational demands.

Assessment criteria

This issue is split into three parts:

- Aftercare support (1 credit)
- Seasonal commissioning (1 credit)
- Post-occupancy evaluation (1 credit)

The following is required to demonstrate compliance:

One credit – Aftercare support

1. There is (or will be) operational infrastructure and resources in place to provide aftercare support to the building occupiers, which includes the following as a minimum:

 1.a A meeting programmed to occur between the aftercare team or individual and the building occupier or management (prior to initial occupation, or as soon as possible thereafter) to:

 1.a.i Introduce the aftercare team or individual to the aftercare support available, including the building user guide (where existing) and training schedule and content

 1.a.ii Present key information about the building, including the design intent and how to use the building to ensure it operates as efficiently and effectively as possible.

 1.b On site facilities management training, to include a walkabout of the building and introduction to and familiarisation with the building systems, their controls and how to operate them in accordance with the design intent and operational demands

 1.c Initial aftercare support provision for at least the first month of building occupation, e.g., on site attendance on a weekly basis to support building users and management (this could be more or less frequent depending on the complexity of the building and building operations)

 1.d Longer term aftercare support provision for occupants for at least the first 12 months from occupation, e.g., a helpline, nominated individual or other appropriate system to support building users and management.

2. There is (or will be) operational infrastructure and resources in place to coordinate the collection and monitoring of energy and water use data for a minimum of 12 months, once the building is occupied. This is done to facilitate analysis of discrepancies between actual and predicted performance, with a view to adjusting systems or user behaviours accordingly. Use
SVEBY branch standard to follow up predicted energy and water use.

One credit – Seasonal commissioning

3. The following seasonal commissioning activities will be completed over a minimum 12-month period, once the building becomes substantially occupied:

3.a Complex systems - Specialist Commissioning Manager:

3.a.i Testing of all building services under full load conditions, i.e. heating equipment in midwinter, cooling and ventilation equipment in midsummer, and under part load conditions (spring and autumn)

3.a.ii Where applicable, testing should also be carried out during periods of extreme (high or low) occupancy

3.a.iii Interviews with building occupants (where they are affected by the complex services) to identify problems or concerns regarding the effectiveness of the systems

3.a.iv Recommissioning of systems (following any work needed to serve revised loads), and incorporating any revisions in operating procedures into the operations and maintenance (O&M) manuals.

3.b Simple systems (naturally ventilated) - external consultant or aftercare team or facilities manager:

3.b.i Review thermal comfort, ventilation, and lighting, at three, six and nine month intervals after initial occupation, either by measurement or occupant feedback

3.b.ii Take all reasonable steps to recommission systems following the review to take account of deficiencies identified and incorporate any relevant revisions in operating procedures into the O&M manuals.

One credit – Post-occupancy evaluation (POE)

4. The client or building occupier makes a commitment to carry out a POE (Post Occupancy Evaluation) exercise one year after initial building occupation. This is done to gain in-use performance feedback from building users to inform operational processes. This includes recommissioning activities, and to maintain or improve productivity, health, safety and comfort. The POE is carried out by an independent third party (see Relevant definitions) and needs to cover:

4.a A review of the design intent and construction process (review of design, procurement, construction and handover processes)

4.b Feedback from a wide range of building users including facilities management on the design and environmental conditions of the building covering:

4.b.i Internal environmental conditions (light, noise, temperature, air quality)

4.b.ii Control, operation and maintenance

4.b.iii Facilities and amenities

4.b.iv Access and layout

4.b.v Other relevant issues.

4.c Sustainability performance (energy use, water use, performance of any sustainable features or technologies, e.g. materials, renewable energy, rainwater harvesting etc.).
5. The client or building occupier makes a commitment to carry out the appropriate dissemination of information on the building’s post-occupancy performance. This is done to share good practice and lessons learned, inform changes in user behaviour, building operational processes and procedures, and system controls. Refer to compliance notes CN3.1 and CN3.2 for a definition of appropriate dissemination. This also provides advice on appropriate dissemination where the building or building information is commercially or security sensitive.

Exemplary level criteria

The following outlines the exemplary level criteria to achieve one exemplary credit for this BREEAM-SE issue:

6. There are, or will be, operational infrastructure and resources in place to coordinate the following activities at quarterly intervals for the first three years of building occupation:
 6.a Collection of occupant satisfaction, energy use and (where available) water use data
 6.b Analysis of the data to check the building is performing as expected, make any necessary adjustments to systems controls or to inform building user behaviours
 6.c Setting targets or appropriate actions for reducing water and energy use and monitor progress towards these
 6.d Feedback any ‘lessons learned’ to the design team and developer for use in future projects
 6.e Provision of the actual annual building energy, water use and occupant satisfaction data to SGBC.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable.</td>
</tr>
</tbody>
</table>

Residential - Partially fitted and fully fitted

<table>
<thead>
<tr>
<th>CN2</th>
<th>Applicable assessment criteria</th>
</tr>
</thead>
</table>
| | – Single dwellings | **Aftercare and seasonal commissioning, criteria 1 to 3**
| | | Both options: All criteria relevant to the building type and function apply. |
| | Post-occupancy evaluation and Exemplary level, criteria 4 to 6 | Both options: These criteria is not applicable. |
| CN2.1 | Applicable assessment criteria | Both options: All criteria relevant to the building type and function apply. |
| | – Multiple dwellings | |

General
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3</td>
<td>Collection and monitoring of energy and water use data. See criteria 2 and 4.</td>
<td>This function can be coordinated or carried out by a dedicated aftercare team or, where the building occupier is known and able to confirm compliance based on their existing or proposed operations for the building, the building owner or occupier’s estates or facilities management team.</td>
</tr>
</tbody>
</table>
| CN3.1 | Appropriate dissemination of POE information See criterion 5. | 1. Appropriate dissemination includes communication to immediate stakeholders such as building occupants, managers and owners. In addition information should be communicated externally.
2. Appropriate dissemination in most cases will be the production and publication of a building case study through one of the following means:
a. The client’s or building owner’s own website, publicly available literature or press release
b. Industry, sector, government or local authority sponsored website or information portals.
Where there is a demonstrably justifiable reason why public dissemination is not possible, for example the information is commercially or security sensitive, compliance can be demonstrated by a commitment to produce and disseminate the relevant information at an organisational level or to appropriate internal or external stakeholders. Alternatively, the sensitive parts of the relevant information for dissemination can be omitted from the publication. |
| CN3.2 | Relevant information for dissemination. See criterion 5. | This includes the following information about the building and its performance:
1. A basic description of the project and building
2. BREEAM-SE rating and score
3. The key innovative and low-impact design features of the building
4. Project cost
5. Project size: floor area, site area
6. Facilities available for community use (where relevant)
7. Any steps taken during the construction process to reduce environmental impacts, i.e. innovative construction management techniques
8. Predicted and actual carbon dioxide emissions or Energy Performance Certificate rating
9. Outcomes of the POE study to share lessons learned from the project including:
a. Occupant feedback
b. Energy and water use including renewable energy generation, level of rainwater or grey water provision |

Methodology

None

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aftercare support</td>
<td>Evidence of a commitment or contract to provide compliant aftercare support and training.</td>
<td>Evidence of a contract to provide compliant aftercare support and training.</td>
</tr>
</tbody>
</table>
Criteria

Interim design stage

<table>
<thead>
<tr>
<th>Seasonal commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>Appointment letters or commissioning responsibilities schedule. Evidence of either existing procedures or a commitment or contract to put in place a mechanism to:</td>
</tr>
<tr>
<td>1. Collect, compare and analyse relevant data</td>
</tr>
<tr>
<td>2. Undertake suitable adjustments if necessary.</td>
</tr>
</tbody>
</table>

Final post-construction stage

Seasonal commissioning records, reports or a letter of appointment and commissioning responsibilities schedule. Records of occupant interviews.

Relevant definitions

Absence of predicted performance data

Where building occupiers do not have predicted performance models, it may be more appropriate to benchmark actual building performance data with other sources of Building Performance Evaluation Data and benchmarks. Data from Sveby or similar buildings in Sweden may be used.

Actual vs predicted performance

In most cases it is not feasible to accurately compare predicted vs actual performance due to variances in the assumptions used in the models. On average, buildings use between 1.5 and 2.5 times the predicted values. When comparing predicted with actual values, an analysis should be carried out to understand why there may be discrepancies in performance. These discrepancies can be for a number of reasons including:

- Predicted energy use is normally based upon building regulation compliance models which only focus on ‘regulated’ energy use. Additional unrelated energy use may not have been modelled in the design prediction model.
- They may be extended use due to extra occupancy and operating hours, not accounted for in the predicted models.
- Inefficiencies from poor control, bad commissioning or poor maintenance.
- Additional special functions such as a cafeteria, server rooms etc. not accounted for in the predicted model.
- Variances in actual occupant behaviour that vary from predicted, such as use of small power and lighting.
Complex systems

These include, but are not limited to, air-conditioning, mechanical ventilation, displacement ventilation, complex passive ventilation, building management systems (BMS), renewable energy sources, microbiological safety cabinets and fume cupboards, cold storage enclosures and refrigeration plant.

Independent third party

To comply with criterion 4 relating to the use of an independent party, the client or design team needs to demonstrate either of the following options:

1. They have used a third party independent of the design process to conduct the necessary POE exercise using a compliant method
 OR

2. If the POE is to be carried out by an organisation involved with the design of the building, e.g., the project architect, they must present the assessor with the evidence that demonstrates the independence of the POE process from the design process. BREEAM-SE has not attempted to define what form this exercise must take; the onus is on the design team or relevant individual to clearly demonstrate to the BREEAM-SE Assessor a credible level of independence.

POE Methodologies

The most relevant POE methodology that fulfils the criteria should be used. For example, in the UK, the building use studies (BUS) methodology was developed following a series of Government funded ‘PROBE’ building performance evaluation studies in 1995. The BUS methodology is used by independent licensed partners following a four part process.

BRE’s Design Quality Method (DQM) is a tried and tested, independent, POE method used by all UK auditing authorities, and many funding bodies. Further guidance on POE:

- The BCO guide to Post Occupancy Evaluation (POE), British Council for Offices, 2007
- BRE Digest 478, Building performance feedback: getting started, Building Research Establishment, 2003

Specialist commissioning manager

The specialist commissioning manager is a specialist subcontractor rather than a general subcontractor.

Other information

SVEBY (standardization and verification of energy performance in buildings) is a cross-industry program with tools for energy follow up. An agreement between the Client and the Contractor and standardized input data for calculations and the verification of the energy use.
Man 06 Moisture safety

Aim

To prevent future moisture problems by damp-proof design and moisture safety construction of the building.

Assessment criteria

This issue is split into two parts:

- Prerequisite
- Moisture safety (up to two credits)

The following is required to demonstrate compliance:

Prerequisite

1. The building is designed and planned according to moisture control and constructed according to the general recommendations in the Swedish Building Code Section 6:5, i.e. moisture critical structures are identified and documented, control plans are drawn up and the implementation is documented.
2. A person responsible for documenting the moisture safety during planning is appointed.
3. The developer’s moisture safety requirements are documented in accordance with the schedule of evidence.

Up to two credits – Moisture safety

One credit

4. The moisture safety planning is performed in accordance with the Swedish guidelines “Bygga F” or equivalent. At least two working preparations regarding moisture critical elements should be performed. A minimum of 3 moisture inspections should be performed. The number of rounds depend on the project size and type and should be described in the moisture safety specification by the moisture expert (fuktsakkunnig).
5. Current Swedish industry standards and codes of practice for wet areas and plumbing (see CN3) are followed.
6. A moisture expert (developer’s expert) (fuktsakkunnig) and at least one Moisture safety officer for production (fuktsäkerhetsansvarig produktion) are appointed and responsible for the project’s moisture safety according to ByggaF or equivalent. Note that criterion 2 is fulfilled if criterion 6 is achieved.
7. Humidity measurements in concrete are carried out according to the guidelines from RBK (Rådet för Byggkompetens).
8. A moisture safety plan is drawn up by the contractor based on the developer’s moisture requirements and the results of the moisture safety design.
9. Drying estimations for concrete and levelling compounds must be reported to ensure that the drying times occur for the prescribed concrete qualities within the project’s time plan.

10. Early air leakage detection is performed on the building envelope to ensure that it is not exposed to unacceptable moisture risks. The air leakage detection should be coordinated with the credit ‘Testing and inspecting building fabric’ in Man 04.

One credit

11. First credit has been achieved. A minimum of 5 (2 more than for first credit) moisture inspections should be performed.

12. A qualified moisture expert (fuktsakkunnig), at least one moisture safety officer for planning (fuktsäkerhetsansvarig projektering) and at least one moisture safety officer for production (fuktsäkerhetsansvarig produktion) are appointed and responsible for the project’s moisture safety according to ByggaF or equivalent.

13. Testing of waterproofing for flat roofs, roof, decks and similar building components is performed (according to the AMA Hus YSC.1132 or equivalent).

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Residential - Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN3 | Swedish industry standards and codes of practice for wet areas and plumbing | Säker vatten (Industry standards Säker Vatteninstallation)
BBV (Trade Rules of the Swedish Ceramic Tile Council for Wet Areas)
GVK Säkra våtrum
MVK Måleribranschens våtrumskontroll
Industry standard ByggaF (method for moisture safety of the construction process)
RBK (Rådet för Byggkompetens) |
| CN3.1 | Qualified moisture expert (Diplomerad fuktsakkunnig) | It is acceptable that the certified moisture expert (diplomerad fuktsakkunnig) has not carried out the tasks that are within the moisture expert’s role and commitment, provided that it is clear that the moisture expert has reviewed, approved and fully taken responsibility for the methods and content of recommendations and reporting. The expert must have achieved the competence requirements in the criteria before starting the task. |

Methodology

None
Evidence

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evidence to demonstrate that the moisture design has been performed in accordance with BBR.</td>
<td>As design stage.</td>
</tr>
<tr>
<td>2</td>
<td>A named person responsible for moisture safety.</td>
<td>As design stage.</td>
</tr>
<tr>
<td>3</td>
<td>The developer’s moisture safety requirements.</td>
<td>As design stage.</td>
</tr>
</tbody>
</table>

First credit

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Moisture design documented according to template from ByggaF or equivalent. The document must be signed by the responsible moisture safety officers for planning.</td>
</tr>
<tr>
<td>5</td>
<td>Verification from planners that wet rooms and plumbing are designed according to current industry standards and codes of practice.</td>
</tr>
<tr>
<td>6</td>
<td>CV for the Moisture expert and name of the moisture safety officer for production.</td>
</tr>
<tr>
<td>7</td>
<td>RBK measurement protocols.</td>
</tr>
<tr>
<td>8</td>
<td>The contractor’s moisture safety plan and results from measurements and controls according to the contractor’s moisture safety plan.</td>
</tr>
<tr>
<td>9</td>
<td>Results from drying estimations reported.</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Second credit

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>As 4–10 above.</td>
</tr>
<tr>
<td>12</td>
<td>Verification of qualification for the moisture expert (fuktsakkunnig)</td>
</tr>
<tr>
<td>13</td>
<td>Testing report showing an approved waterproofing test(s) (according to the AMA Hus YSC.1132 or equiv.) for flat roofs, roof terraces, decks and similar constructions.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

BBV

Trade Rules of the Swedish Ceramic Tile Council for Wet Areas

Bygga F

Bygga F is a method of a moisture safety construction process - is a systematic method for ensuring, documenting and communicating moisture control throughout the construction process. Bygga F contains a variety of tools in the form of manual control plans and checklists.
GVK
Golvbranchens Våtrumskontroll

Moisture safety officer for planning (fuktsäkerhetsansvarig projektering)
Person who is responsible for implementing and documenting moisture safety planning. If there are more than one moisture safety officer for planning, someone must be responsible for coordinating.

Moisture safety officer for production (fuktsäkerhetsansvarig produktion)
Person responsible for moisture safety at each supplier or contractor.

MVK
Måleribranschens våtrumskontroll

RBK measurements
RBK measurements are always performed by moisture technicians that have RBK-authorization. The authorization is personal, and ensures that the examiner has the necessary skills and follows the system instructions.

RBK authorized humidity controller for concrete is a quality system where each measurement is performed and documented in a consistent and well-defined manner. The active controllers monitored by the RAN, RBK’s Licensing Board, which conducts audits of the controller’s operation. During these audits ensures that the controller works on the system and that no discrepancies exist.

Säker vatten
Industry Guidelines Säker Vatten is a standard that is developed by industry stakeholders to reduce the risk of water damage, legionella proliferation, burns and poisoning. The system includes an authorization of the plumbing company and the training of plumbers, supervisors and others. The goal is to provide increased security and safety of the user.

Qualified moisture expert (Fuktsakkunnig)
The qualified moisture expert should be appointed by the developer. A moisture expert is a person who has good knowledge of moisture and basic knowledge of building engineering, building physics and the construction process. Qualified Moisture Safety Expert (Diplomerad fuktsakkunnig) are qualified through the Moisture Research Centre in Lund (FuktCentrum) and the Technical Research Institute of Sweden (RISE).
6.0 Health and wellbeing

Summary

This category encourages the increased comfort, health and safety of building occupants, visitors and others within the vicinity. Issues in this section aim to enhance the quality of life in buildings by recognising those that encourage a healthy and safe internal and external environment for occupants.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hea 01 Visual comfort</td>
<td>Up to 7</td>
<td>The potential for disabling glare has been designed out of all relevant building areas. Good practice daylighting levels have been met. Floor space in the relevant building areas has an adequate view out to reduce eye strain and provide a link to the outside. Internal and external lighting systems are designed to avoid flicker and provide appropriate illuminance (lux) levels. Internal lighting is zoned to allow for occupant control.</td>
</tr>
<tr>
<td>Hea 02 Indoor air quality</td>
<td>6</td>
<td>Minimising sources of air pollution through careful design, specification and planning. Building ventilation strategy is designed to be flexible and adaptable to potential future building occupant needs and climatic scenarios.</td>
</tr>
<tr>
<td>Hea 03 Safe containment in laboratories</td>
<td>2</td>
<td>Production of an objective risk assessment of the proposed laboratory facilities. Containment devices such as fume cupboards meet best practice safety and performance requirements and objectives. Containment level 2 and 3 laboratory facilities to meet best practice safety and performance criteria where specified.</td>
</tr>
<tr>
<td>Hea 04 Thermal comfort</td>
<td>3</td>
<td>Thermal modelling carried out to appropriate standards. Projected climate change scenarios considered as part of the thermal model. The thermal modelling analysis has informed the temperature control strategy for the building and its users.</td>
</tr>
<tr>
<td>Hea 05 Acoustic performance</td>
<td>4</td>
<td>The building meets appropriate acoustic performance standards and testing requirements.</td>
</tr>
<tr>
<td>Hea 06 Accessibility</td>
<td>2</td>
<td>Provision of effective measures which support safe access to and from the building. Security needs are understood and taken into account in the design and specification.</td>
</tr>
<tr>
<td>Hea 08 Outdoor space</td>
<td>1</td>
<td>Provision of outdoor space which gives occupants a sense of wellbeing.</td>
</tr>
<tr>
<td>Hea 09 Microbial contamination</td>
<td>1</td>
<td>Reduction of water contamination risk.</td>
</tr>
<tr>
<td>Hea 10 Radon</td>
<td>2</td>
<td>Design and planning of buildings in order to limit the radon levels.</td>
</tr>
</tbody>
</table>
Hea 01 Visual comfort

Number of credits available	Minimum standards
Building type dependent yes (Criterion 1 only)

Aim
To ensure daylighting, artificial lighting and occupant controls are considered at the design stage to ensure best practice in visual performance and comfort for building occupants.

Assessment criteria
This issue is split into six parts:

- Prerequisite
- Glare control (1 credit)
- Daylighting (up to 3 credits)
- View out (1 credit)
- Exposure to sunlight (1 credit – building type dependent)
- Internal and external lighting (1 credit)

The following is required to demonstrate compliance:

Prerequisite
1. All fluorescent and compact fluorescent lamps are fitted with high frequency ballasts/transformers/drivers. If LED's are used in the building, drivers shall fulfil EU: s design directive, be fitted with AM (Amplitude Modulation) OR, if PMW (Pulse-Width Modulation) is used, the modular power shall not be lower than 300 Hz. The criterion is applicable for all lighting specified for the building.

One credit – Glare control
2. The project must assess the potential for daylight glare for all relevant areas of the building (see Definitions) according to SS-EN 17037:2018 where DGP (Daylight Glare Probability – see Definitions) does not exceed 0.4 for more than 5% of the occupation time.
3. The glare control strategy avoids increasing lighting energy use by ensuring that:
 3.a The glare control system is designed to maximise daylight levels under all conditions while avoiding discomfort glare in the workplace or other sensitive areas. The system should not inhibit daylight from entering the space under cloudy conditions, or when sunlight is not on the façade.
 AND
 3.b The use or location of shading does not conflict with the operation of lighting control systems.
Up to three credits – Daylighting

4. Daylighting criteria have been met using either of the following options in accordance with the methods outlined in SS-EN 17037:2018:

4.a The relevant building areas meet target daylight factors \(D_T\) and minimum target daylight factors \(D_{TM}\) as outlined in Table 11.

OR

4.b The relevant building areas meet target illuminance \(E_T\) and minimum target illuminances \(E_{TM}\) criteria as outlined in Table 11.

Table 11: Values of Target daylight factor \(D_T\) and Minimum target daylight factors \(D_{TM}\) respectively Target illuminance \(E_T\) and Minimum target illuminance \(E_{TM}\) required.

<table>
<thead>
<tr>
<th>Building or area type</th>
<th>Openings in vertical surfaces</th>
<th>Openings in horizontal surfaces</th>
<th>Minimum area ((m^2)) to comply</th>
<th>2 credits</th>
<th>3 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>All buildings except residential and residential institutions</td>
<td>EITHER (D_{TM}=0.8%) in 95% of the room AND (D_T=2.5%) in 50% of the room OR (E_{TM}=100) lux in 95% of the room AND (E_T=300) lux in 50% of the room For at least 50% of the annual daylight hours.</td>
<td>EITHER (D_{TM}=0.7%) in 95% of the room AND (D_T=2.1%) in 50% of the room OR (E_{TM}=100) lux in 95% of the room AND (E_T=300) lux in 50% of the room For at least 50% of the annual daylight hours.</td>
<td>60%</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>
Building or area type

<table>
<thead>
<tr>
<th>Building or area type</th>
<th>Minimum area (m²) to comply</th>
<th>Openings in vertical surfaces</th>
<th>Openings in horizontal surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential dwelling and residential institutions*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Openings in vertical surfaces (can include horizontal openings)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₁ = 1.5% in 50% of the room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₁ = 200 lux in 50% of the room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For at least 50% of the annual daylight hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living rooms, dining rooms, studies, single room apartment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₁ = 1.5% in 50% of the room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₁ = 200 lux in 50% of the room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For at least 50% of the annual daylight hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td>80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₁ = 0.8% in 50% of the room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₁ = 100 lux in 50% of the room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For at least 50% of the annual daylight hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-residential or communal spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EITHER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = 0.8% in 95% of the room AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₁ = 2.5% in 50% of the room OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eᵢₕ = 100 lux in 95% of the room AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eᵢₕ = 300 lux in 50% of the room AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For at least 50% of the annual daylight hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*In addition to the requirement of % of the total area, at least one room per dwelling must be compliant to achieve the credit.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One credit – View out

5. Where 75% of the occupied space in relevant areas of the building (see Definitions) must meet the criteria for the minimum level of view according to SS-EN 17037:2018 Daylight in buildings and as defined in Table 12.
Table 12: Minimum Viewing angle, distance to view and layer requirements

<table>
<thead>
<tr>
<th>Horizontal sight angle</th>
<th>Outside distance to the view</th>
<th>Number of layers to be seen from at least 75% of the utilized area:</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥14°</td>
<td>≥6.0 m</td>
<td>• Sky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Landscape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ground</td>
</tr>
</tbody>
</table>

At least landscape layer is included

One credit – Exposure to sunlight (residential, education, residential institutions – long term stay only)

6. Criteria for exposure to sunlight have been met according to SS-EN 17037: 2018 Daylight in buildings for all relevant areas of the building (see Definitions) where cumulative sunlight exposure at point P (see Definitions) meets or exceeds 1.5 hours for a selected day between February 1rst and March 21rst.

One credit – Internal and external lighting levels, zoning and control

Internal lighting

7. Internal lighting in all relevant areas of the building is designed to provide an illuminance (lux) level appropriate to the tasks undertaken, accounting for building user concentration and comfort levels. This can be demonstrated through a lighting design strategy that provides illuminance levels in accordance with national best practice lighting guides (see CN3.10). For areas where computer screens are regularly used, see CN3.17.

8. The uniformity of illuminance due to electric lighting is as per the recommendation in the approved local standard.

9. For areas where computer screens are regularly used, confirmation is required that the lighting has been designed to limit the potential for glare in accordance with a numerical glare limit specified within national best practice lighting guides (see CN3.10 and CN3.17). These should include:

- 9.a Limits to the luminance of the luminaires to avoid screen reflections. Manufacturers’ data for the luminaires should be sought to confirm this
- 9.b For uplighting, the recommendations refer to the luminance of the lit ceiling rather than the luminaire; a design team calculation is usually required to demonstrate this
- 9.c Recommendations for direct lighting, ceiling illuminance, and average wall illuminance.

External lighting

10. All external lighting located within the assessment zone is designed to provide illuminance levels that enable users to perform outdoor visual tasks efficiently and accurately, especially during the night. To demonstrate this, external lighting provided is specified in accordance with SS-EN 13201 series Road Lighting and SS-EN 12464-2:2014 Light and lighting – Lighting of work places – Part 2: Outdoor work places.
Zoning and occupant control

11. Internal lighting is zoned to allow for occupant control (see Relevant definitions) in accordance with the criteria below for relevant areas present within the building:

11.a In office areas, zones of four workplaces (see CN3.13). For workplaces the requirement of occupant control covers workplace lighting and not general lighting.
11.b Workstations adjacent to windows or atria and other building areas separately zoned and controlled. This applies to workspace lighting and not general lighting.
11.c Seminar and lecture rooms: zoned for presentation and audience areas.
11.d Library spaces: separate zoning of stacks, reading and counter areas.
11.e Teaching space or demonstration area.
11.f Whiteboard and display screen. This criterion is only applicable if there is a need for lighting in the display zone. If there is no such need, the criterion is achieved by default.
11.g Auditoria: zoning of seating areas, circulation space and lectern area
11.h Dining, restaurant, café areas: separate zoning of servery and seating or dining areas.
11.i Retail: separate zoning of display and counter areas
11.j Bar areas: separate zoning of bar and seating areas
11.k Day rooms, waiting areas: zoning of seating and activity areas and circulation space with controls accessible to staff
11.l Hotel bedrooms: separate zoning of hallway, bathroom, desk and sleeping area (where present in the room).

12. Areas used for teaching, seminar or lecture purposes have lighting controls specified in accordance with the size and use of the space, but a typical auditorium or lecture theatre with stepped seating and a formal lectern or demonstration or performance area would typically be expected to have lighting controls as follows:

12.a Full normal lighting (to allow for entry and exit, cleaning etc.)
12.b Demonstration area lighting off and audience area lighting reduced to a low level (for the purpose of line slide projection, but allowing enough light for the audience to take notes)
12.c All lighting off (for the projection of tone slides, colour slides, and for the purposes of visual demonstrations or performances)
12.d Separate localised lectern lighting.

13. In addition, the building type criteria in Table 13 (where relevant).

Table 13: Internal and external lighting – building specific

<table>
<thead>
<tr>
<th>Building type</th>
<th>Internal and external lighting requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education buildings</td>
<td>Manual lighting controls are easily accessible for the teacher while teaching and on entering or leaving the teaching space.</td>
</tr>
</tbody>
</table>

Checklists and tables

Table 11–13.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Prerequisite: criterion 1
Both options: This criterion is not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glare control: criteria 2 and 3
Both options: These criteria are not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daylighting: criterion 4
Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>View out: criteria 5
Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exposure to Sunlight: criteria 6
Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal lighting, zoning and occupant control: criteria 7 to 9, 11 to 13
Both options: These criteria are not applicable.</td>
</tr>
<tr>
<td>CN1.1</td>
<td>View out</td>
<td>External lighting: criterion 10
Both options: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>

- **CN1.1 View out**
Where it is not possible to confirm which areas of the building will contain workstations or benches or desks, then all areas of the building designed for or likely to be occupied by workstations or benches or desks must comply with the relevant criteria.
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Prerequisite: criterion 1
Both options: This criterion is not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glare control: criteria 2 and 3
Both options: These criteria are not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daylighting: criterion 4
Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>View out: criteria 5
Both options: These criteria are not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exposure to Sunlight: criteria 6
Both options: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>
| | | **Internal lighting, zoning and occupant control: criteria 7 to 9, 11 to 13**
Partially fitted: These criteria are not applicable.
Fully fitted: All criteria relevant to the building type and function apply |
| | | **External lighting: criterion 10**
Partially fitted: These criteria are not applicable.
Fully fitted: All criteria relevant to the building type and function apply |
| General | **Glare control** | Compliant shading measures for meeting glare control criteria include:
- Building integrated measures (e.g., low eaves)
- Occupant controlled devices such as blinds (where transmittance value is equal to or less than 0.05 (5%))
- Bioclimatic design
- External shading or brise soleil.
Glare control does not have to be installed where design studies have demonstrated that sunlight is prevented from reaching building occupants during occupied hours. In such cases, the client must provide a written commitment ensuring that measures to prevent potential glare will be installed if the problem should arise (for example, where unforeseen reflections cause glare issues for building occupants).
Curtains (where used without other forms of shading) do not meet the criteria for the glare control criteria, as they do not provide sufficient control to optimise daylight into the space. Furthermore, the use of curtains to control glare is likely to cause occupants to rely more on artificial lighting. |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daylighting</td>
<td>Percentage of assessed area.</td>
<td>Where the criteria specify that a percentage of floor area must be adequately illuminated by daylight, this refers to the percentage of the total floor area of all the rooms that must be assessed, i.e. the compliant area. If for example, a development has six rooms that must be assessed, each 150m² (total area 900m²) and 80% of this floor area must meet the criterion, then 720m² must comply with the criterion; this is equal to 4.8 rooms. The number of rooms that must comply must always be rounded up; therefore in this example, five rooms must have an average daylight factor of 2% or more (plus meet the other criteria) to achieve the credit.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Calculation parameters</td>
<td>In calculating minimum and median daylight factors and daylight illuminances, the following must be observed: Calculations shall not include areas within a distance of 0.5 m from walls. The assessment should use the B.2 Calculation grid in SS-EN 17037: 2018 Daylight in buildings to make a specification that will ensure standardised and accurate results. The following reflection factors should be used: • floors: 0.3 • walls: 0.5 • windowsills: 0.8 • ceilings: 0.8 Project specific reflection factors are permitted but these must be validated by submission of relevant specification. Calculations must be performed on a reference plane that is 0.85 m above the floor. External obstructions should be taken into account. For daylight factor and illuminance calculations, the reflectance of external obstructions should be taken as 0.2 unless on site measurements of external reflectance have been made.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Dirt factors when calculating daylight</td>
<td>Daylight calculations should include a maintenance factor for dirt on the windows. An example is as given given in “Räkna med dagsljus by Hans Allan Löfberg”, table 18. The publication can be found on the website for The Swedish National Board of Housing, Building and Planning (Boverket)</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Annual daylit hours and climate data</td>
<td>Annual daylight hours is the time from sunrise to sunset throughout the year. Hourly climate data for over 750 climate sites in Sweden is available at: http://climate.onedbuilding.org/WMO_Region_6_Europe/default.html The assessment must make a justified appraisal of which climate site best corresponds to the location of the building in question.</td>
</tr>
<tr>
<td>View out</td>
<td>View through multiple windows</td>
<td>View through multiple windows within the same room are permissible, for methodology see SS-EN17037:2018.</td>
</tr>
<tr>
<td>CN3.5</td>
<td>Positioning of assessment point</td>
<td>The assessment is to be conducted for each opening in the space from a reference point (P) located for each window on the inner surface of the opening and 1.2 m above the floor for openings without a sill, and 0.3 m above the sill of the opening if a sill is present. See Annex D in SS-EN 17037 for further information on calculation methodology.</td>
</tr>
</tbody>
</table>

Exposure to sunlight

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3.6</td>
<td>Rooms with multiple vertical openings</td>
<td>If the room has multiple openings in the façade that provide sunlight, the project can count sunlight from both openings, provided that they do not provide sunlight for the same period of time. For example, a room that receives one hour of sunlight from a window to the south and two hours of sunlight from a window to the west later in the day can count a total of three hours of sunlight for this room.</td>
</tr>
</tbody>
</table>
Internal and external lighting levels or zoning and control

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3.8</td>
<td>Buildings housing people of limited mobility</td>
<td>The assessment must document that the minimum level in Table A.6 in SS-EN 1737:2018 has been achieved in all of the relevant building areas. In buildings for people with limited mobility, the orientation of openings should take into account the hours of occupancy and any preferences for sunlight at particular times of day.</td>
</tr>
<tr>
<td>CN3.9</td>
<td>Validation</td>
<td>The Exposure to sunlight credit can be validated either by using software, see section D.3 in Annex D in SS-EN 17037, or by using the geometric construction method described in section D.4 in Annex D in SS-EN 17037.</td>
</tr>
<tr>
<td>CN3.10</td>
<td>National best practice lighting guides</td>
<td>National best practice lighting guides include the relevant regulations (Arbetsmiljöverkets föreskrifter) from "Arbetsmiljöverket". Arbetsplatsens utformning (AFS 2020) and Arbete vid bildskärm (AFS 1998:05) as well as the following Swedish standards and practice: SS-EN 12464-1:2021 and SS-EN 12464-2:2014. (for internal lighting Ljus & Rum can be used as guidance)</td>
</tr>
<tr>
<td>CN3.11</td>
<td>Occupancy and workstation layout unknown</td>
<td>Where occupancy or workstation layout is not known, lighting control can be zoned on the basis of 40m² grids, i.e. an assumption of 1 person or workspace per 10m².</td>
</tr>
<tr>
<td>CN3.12</td>
<td>Small spaces</td>
<td>Buildings consisting entirely of small rooms or spaces (less than 40m²) which do not require any subdivision of lighting zones or control will meet the zoning criteria by default.</td>
</tr>
<tr>
<td>CN3.13</td>
<td>Zones of four workspaces</td>
<td>The limit of four workspaces is indicative of the required standard but is not a fixed requirement. Where there is justification for this to be increased to fit with the adopted lighting strategy, this may be accepted provided that the assessor is satisfied that the aim of this criterion is upheld, i.e. that there is suitable zoning or control of lighting to enable a reasonable degree of occupant control over lighting in their personable work area. The relevant design team member, e.g. a lighting consultant, should set out how this is to be achieved in such an instance.</td>
</tr>
<tr>
<td>CN3.14</td>
<td>Internal areas excluded from the requirements</td>
<td>The following internal areas are excluded from the lighting zone requirements: 1. Media and arts production spaces 2. Sports facilities (exercise spaces only, including hydrotherapy and physiotherapy areas).</td>
</tr>
<tr>
<td>CN3.15</td>
<td>No external lighting</td>
<td>Where no external light fittings are specified (either separate from or mounted on the external building façade or roof), the criteria relating to external lighting do not apply and the credit can be awarded on the basis of compliance with the internal lighting criteria.</td>
</tr>
<tr>
<td>CN3.16</td>
<td>Zoning rooms not listed</td>
<td>For zoning rooms or spaces not listed within criteria 11 and 12, the assessor can exercise an element of judgment when determining whether what is specified is appropriate for the space, given its end use and the aim and criteria of this BREEAM-SE issue.</td>
</tr>
<tr>
<td>CN3.17</td>
<td>Lighting levels for areas where computer screens are regularly used</td>
<td>Projects can specify 300 lux instead of what is prescribed in SS-EN 12464-1:2021. This is as per CIBSE Lighting Guide 7 but can only be accepted if there is a possibility for the building user to increase the lighting level to 500 lux if needed, in accordance with standard EN 12464:2011. Workplace lighting (e.g. desk lamps) that enables building users to increase the lighting to 500 lux can be used to demonstrate compliance. A lease agreement obliging the tenants to provide such workplace lighting can be used to demonstrate compliance if workplace lighting is not within the scope of the project.</td>
</tr>
<tr>
<td>CN3.18</td>
<td>Type floor plan or type room</td>
<td>When determining the appropriate daylighting, view out and illuminance level for indoor lighting, a type of floorplan or type room can be used provided that it is clearly motivated with regards to equivalence and choice of representative floor plan and room.</td>
</tr>
</tbody>
</table>
CN3.19 Standards for external lighting

The criterion is applicable to the external areas covered in the standards. For parking areas, pedestrian and cycle routes, roads and loading docks etc., SS-EN 12464-2 is applicable. For roads and pedestrian and cycle routes etc. SS-EN 13201 Is applicable. Pedestrian routes through a garden that is not designed for access to the building may be exempt.

CN3.20 Temporary workplaces

All desks, including hot desks or touch down places where employees or guests work temporarily, and are defined as occupied spaces in Hea 01, are considered workplaces and the criteria is applicable.

Building type specific

CN4 Education (preschools) and acute special educational needs controls for children

Where childcare or acute special educational needs spaces are included within the scope of the assessment, controls should be provided for the teacher or member of staff, i.e. it is not a necessity for the controls to be accessible to the children. Where nursery spaces are included within the scope of the assessment, controls should be provided for the member of staff, not the nursery school children.

CN4.1 Hotels – lighting levels in hotel bedrooms

Internal lighting levels in hotel bedrooms will not usually need to conform to national best practice levels for offices as these spaces are not generally used as a workspace. However, if hotel bedrooms, or rooms within a hotel suite, are intended to be used as workspaces, similar to a small office, the lighting levels should conform to national best practice levels for this type of space.

Methodology

None

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A copy of the specification clause or room data sheets confirming a compliant lighting strategy.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence confirming the installation of the specified light fittings with high frequency ballast/ transformers/divers. (All luminaires do not need to be checked. The Assessor controls a representative sample within the building.) OR Purchase orders to verify installed luminaries in line with designs stage specification. Where changes have occurred: As-built drawings/ specification conforming a compliant lighting strategy is installed.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Adequate view out
BREEAM-SE defines an adequate view out as a view of minimum 14 degrees viewing angle, minimum 6 meters distance and at least a landscape or layer (rather than just the sky) at seated eye level (1.2m) within the relevant building areas and should ideally be through an external window. A view into an internal courtyard or atrium will comply provided the distance from the opening to the back wall of the courtyard or atrium is at least 10m (therefore allowing enough distance for the eyes to refocus). The view cannot be an internal view across the room, as this is likely to become obstructed by partitions, filing cabinets etc.

Amplitude Modulation (AM)
Power Reduction / Amplitude Modulation (AM) is another technology used in LED-drivers, and means that the power to the LEDs are reduced to dim down the light. This technique has no flicker at all.

Assessment zone
For the purpose of this BREEAM-SE issue, the assessment zone is defined as the site which is being developed for the BREEAM-SE-assessed building, and the external site areas that fall within the scope of the new works.

Daylight factor
Ratio of total daylight illuminance at a reference point on the working plane within a space to outdoor illuminance on a horizontal plane due to an unobstructed CIE standard overcast sky. Thus a 1% D would mean that the indoor illuminance at that point in the space would be one hundredth the outdoor unobstructed horizontal illuminance.

Table: Visual comfort

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daylighting, view out, exposure to sunlight and glare requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>Design drawings and calculations. Relevant section or clauses of the building specification or contract. Window schedule. Written commitment from client ensuring that measures to prevent potential glare will be installed if glare issues should arise.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence. As-built drawings. Formal confirmation of compliance from the contractor or design team. OR As built drawings and supporting calculations</td>
</tr>
</tbody>
</table>

| Internal and external lighting | | |
| All | Design drawings or room data sheets or schedules. Relevant section or clauses of the building specification or contract OR A letter of formal confirmation of compliance from the relevant design team member. | BREEAM-SE Assessor’s site inspection report and photographic evidence. As-built drawings. Formal confirmation of compliance from the contractor or design team. |
Target Daylight factor (D_T)
Daylight factor value equivalent to the target illuminance to be exceeded for more than half of annual daylight hours over 50% of the reference plane within a daylit space. For purposes of the daylight calculations this amount corresponds to what is more commonly referred to in Sweden as the Median daylight factor.

Minimum Target Daylight factor (D_{TM})
Daylight factor value equivalent to the minimum target illuminance to be exceeded for more than half of annual daylight hours over 95% of the reference plane within spaces with vertical and/or inclined daylight apertures.

Target Illuminance (E_T)
Illuminance from daylight that should be achieved for at least half of annual daylight hours across 50% of the reference plane in a daylit space.

Minimum Target Illuminance (E_{TM})
Illuminance from daylight that should be achieved for at least half of annual daylight hours across 95% of the reference plane in spaces with vertical and/or inclined daylight apertures.

Illuminance
The amount of light falling on a surface per unit area, measured in lux.

Occupied space
A room or space within the assessed building that is likely to be occupied for 30 minutes or more by a building user. Please note there is a specific, unrelated, definition of 'unoccupied' with reference to acoustic testing and measurement and this should not be confused with the definition used here.

Point P
For purposes of evaluation of sunlight, calculations are to be carried out on a reference point (point P) which is located on the inner surface of the aperture and at the center of the opening width. For multiple apertures in different facades, it is possible to cumulate the time of sunlight availability if not occurring at the same time. The reference point is minimum 1.2 m above the floor and 0.3 above the sill of the daylight opening if present. For further information regarding the influence of various shapes of opening linings and exterior constructions of the building please refer to SS-EN 17037:2018.

Pulse-Width Modulation (PWM)
Pulse width modulation (PWM) involves driving LEDs with a modulated voltage. LEDs with PWM should be more than 300 Hz at dimming.

Reflectance
The ratio of the luminous flux reflected from a surface to the luminous flux incident on it.
Relevant building areas – Daylighting

For the purpose of BREEAM-SE this is defined as areas within the building where good daylighting is considered to be of benefit to the building users (typically those areas occupied continuously for 30 minutes or more). This includes the following (where occupied continuously for 30 minutes or more) specifically stated because they are often omitted:

1. Sports hall exercise spaces
2. Laboratory areas unless the type of research that will be carried out requires strictly controlled environmental conditions, such as the exclusion of natural light at all times
3. Self-contained flats
4. Kitchen and catering areas
5. General communal areas
6. Small offices (including those within residential buildings and residential institutions)
7. Meeting rooms (including those within residential buildings and residential institutions)
8. Leisure areas
9. Any area that may involve close up work.

However, this excludes the following (where present):

1. Media, arts production, SEN sensory spaces, x-ray rooms and other areas requiring strictly controlled acoustic or lighting conditions.

Relevant building areas – Glare control

For glare control include areas of the building where lighting and resultant glare could be problematic for users, e.g. those areas that have been designed to contain or use workstations, projector screens etc. and sports halls. Spaces in the categories described above, for which daylight and view out are excluded, should not be assessed against the glare control criteria.

Relevant building areas – Exposure to sunlight

Patient areas: all areas in the building that are mainly used by patients, and is used for more than 30 minutes (e.g. wards, day rooms, etc.),

Teaching: all areas in the building that are mainly used by staff and students to be used for more than 30 minutes (e.g. classrooms, offices, etc).

Dwellings: at least one of the relevant rooms/areas in the dwelling defined under daylight.

Relevant building areas - View out

BREEAM-SE defines relevant building areas requiring a view out to include areas of the building where:

1. There are or will be workstations or benches or desks for building users
2. Close work will be undertaken or visual aids will be used
3. A view out is deemed to be of benefit to the building occupants, e.g. in spaces where occupants are likely to spend a significant amount of time.
Excluded areas for each of these might include:

- Conference rooms, lecture theatres, sports halls, acute SEN and also any spaces where the exclusion or limitation of natural light is a functional requirement, e.g. laboratories, media spaces, etc.

Reference plane or working plane

Horizontal, vertical, or inclined plane in which a visual task lies. The standard height for Swedish daylight calculations is 0.8 m but for purpose of BREEAM-SE, calculations must be performed on a reference plane that is 0.85 m above the floor.

Separate zoning control

Light switches or controls for a particular area or zone of the building that can be accessed and operated by the individuals occupying that area or zone. Such controls will be located within, or within the vicinity of, the zone or area they control.

Other information

None.
Hea 02 Indoor air quality

Aim

To recognise and encourage a healthy internal environment through the specification and installation of appropriate ventilation, equipment and finishes.

Assessment criteria

This issue is split into two parts:

- Minimising sources of air pollution (5 credits)
- Adaptability - potential for natural ventilation (1 credit)

Minimising sources of air pollution

One credit – Indoor air quality (IAQ) plan

1. An indoor air quality plan has been produced and implemented, with the objective of facilitating a process that leads to design, specification and installation decisions and actions that minimise indoor air pollution during the design, construction and occupation of the building. The indoor air quality plan must consider the following:
 1.a Removal of contaminant sources
 1.b Dilution and control of contaminant sources
 1.c Procedures for pre-occupancy flush out
 1.d Third party testing and analysis
 1.e Maintaining indoor air quality in-use

One credit – Ventilation

The building has been designed to minimise the concentration and recirculation of pollutants in the building as follows:

2. Criterion 1 has been achieved.
3. Provide fresh air to the building in accordance with BBR section 6:22 (valid BBR version as regulated in building permit) and, if applicable to the building type, AFS 2020:1.
4. The location of fresh air intakes are designed to minimise the entry of air pollutants into the building, as follows:
 4.a In air-conditioned and mixed-mode buildings or spaces the location of the building’s air intake and exhausts, in relation to each other and external sources of pollution, is designed in accordance with BBR section 6:72 (valid BBR version as regulated in building permit), AFS 2020:1 Arbetsmiljöverkets; Arbetsplatsens utformning (where applicable to the building type) and the latest version of Svenska Inneklimatinstitutet:
4.b In naturally ventilated buildings or spaces: openable windows or ventilators are at least 10 m of horizontal distance from sources of external pollution (including the location of any building related air exhausts).

5. Where present, HVAC systems must incorporate suitable filtration, minimum supply air classification of SUP 2 or higher, to minimise external air pollution, as defined in SS-EN 16798-3:2018.

6. Areas of the building subject to large and unpredictable or variable occupancy patterns have carbon dioxide (CO₂) or air quality sensors specified and:
 6.a In mechanically ventilated buildings or spaces: sensors are linked to the mechanical ventilation system and provide demand-controlled ventilation to the space
 6.b In naturally ventilated buildings or spaces: sensors either have the ability to alert the building owner or manager when CO₂ levels exceed the recommended set point, or are linked to controls with the ability to adjust the quantity of fresh air, i.e. automatic opening windows or roof vents.

Emissions from building products (up to 2 credits)

One Credit

7. Criterion 1 has been achieved.
8. At least three of the five product types listed in Table 14 meet the emission limits, testing requirements and any additional requirements listed in Table 14. Where wood-based products are not one of the three selected product types, all wood-based products used on the building interior must be tested and classified as formaldehyde E1 class, as a minimum.

OR

Two credits

9. Criterion 1 has been achieved.
10. All product types listed in Table 14 meet the emission limits, testing requirements and any additional requirements listed in Table 14.

One credit – post-construction indoor air quality measurement

11. Criterion 1 has been achieved.
12. The formaldehyde concentration in indoor air is measured post-construction (but pre-occupancy) and does not exceed 100µg/m³, averaged over 30 minutes.
14. The total volatile organic compound (TVOC) concentration in indoor air is measured post-construction (but pre-occupancy) and does not exceed 300µg/m³, averaged over 8 hours.
15. The TVOC sampling and analysis is performed in accordance with ISO 16000-5:2007 and ISO ISO 16000-6:2021 or SS-EN ISO 16017-1.
16. Where levels are found to exceed these limits, the project team confirms the measures that have, or will be undertaken in accordance with the IAQ plan, to reduce the TVOC and formaldehyde levels to within the above limits.
17. The measured concentration levels of formaldehyde (µg/m³) and TVOC (µg/m³) are reported, via the BREEAM-SE scoring and reporting tool, for the purpose of confirming criteria 10 to 13.

Adaptability – Potential for natural ventilation

One credit

18. The building ventilation strategy is designed to be flexible and adaptable to potential building occupant needs and climatic scenarios. This can be demonstrated as follows:

18.a Occupied spaces of the building are designed to be capable of providing fresh air entirely via a natural ventilation strategy. The following are methods deemed to satisfy this criterion dependent upon the complexity of the proposed system:

18.a.i The openable window area in each occupied space is equivalent to 5% of the gross internal floor area (bruttoarea/BTA) of that room or floor plate. For room or floor plates between 7m-15m depth, the openable window area must be on opposite sides and evenly distributed across the area to promote adequate cross-ventilation; OR

18.a.ii The design demonstrates that the natural ventilation strategy provides an adequate cross flow of air to maintain the required thermal comfort conditions and ventilation rates.

For a strategy which does not rely on openable windows, or which has occupied spaces with a plan depth greater than 15m, the design must demonstrate that the ventilation strategy can provide adequate cross flow of air to maintain the required thermal comfort conditions and ventilation rates.

19. The natural ventilation strategy is capable of providing at least two levels of user control on the supply of fresh air to the occupied space (see CN3.15 for further details).

Note: Any opening mechanisms must be easily accessible and provide adequate user control over air flow rates to avoid draughts. Relevant industry standards for ventilation can be used to define ‘adequate levels of fresh air’ sufficient for occupancy and internal air pollution loads relevant to the building type.

Note: Residential buildings and residential institutions with self- contained flats and individual bedrooms must have a degree of openable window function. This does not need to provide two levels of user control (as required in criteria 18 and 19) but must be occupant controlled.

Exemplary level criteria

One credit

20. Criterion 1 has been achieved.

21. At least three of the five product types listed in Table 15 meet the emission limits, testing requirements and any additional requirements listed in Table 15. Where wood-based products are not one of the three selected product types, all wood-based products used on the building interior must be tested and classified as formaldehyde E1 class, as a minimum.
Checklists and tables

Table 14: Emission criteria by product type

<table>
<thead>
<tr>
<th>Product type</th>
<th>Emission limit*</th>
<th>Total volatile organic compounds (TVOC)</th>
<th>Category 1A and 1B carcinogens</th>
<th>Testing requirement</th>
<th>Additional requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior paints and coatings (including interior surface treatments such as damp and mould treatment)</td>
<td>≤ 0.06 mg/m³</td>
<td>≤ 1.0 mg/m³</td>
<td>≤ 0.001 mg/m³</td>
<td>SS-EN 16402:2019 OR ISO 16000-9: 2006 OR SS-EN 16516:2017/A1:2020 or CDPH Standard Method v1.2**</td>
<td>Meet TVOC content limits (Table 16) Paints used in wet areas (e.g. bathrooms, kitchens, utility rooms) should protect against mould growth (see CN3.5).</td>
</tr>
<tr>
<td>Wood-based products (including wood flooring)</td>
<td>≤ 0.06 mg/m³</td>
<td>≤ 1.0 mg/m³</td>
<td>≤ 0.001 mg/m³</td>
<td>ISO 16000-9:2006 OR SS-EN 16516:2017/A1:2020 or CDPH Standard Method v1.2** or EN 717-1:2004 (formaldehyde emissions only)</td>
<td>N/A</td>
</tr>
<tr>
<td>Flooring materials (including floor levelling compounds and resin flooring)</td>
<td>≤ 0.06 mg/m³</td>
<td>≤ 1.0 mg/m³</td>
<td>≤ 0.001 mg/m³</td>
<td>SS-EN ISO 10580:2012 or ISO 16000-9:2006 or SS-EN 16516:2017/A1:2020 or CDPH Standard Method v1.2</td>
<td>N/A</td>
</tr>
<tr>
<td>Ceiling, wall, and acoustic and thermal insulation materials</td>
<td>≤ 0.06 mg/m³</td>
<td>≤ 1.0 mg/m³</td>
<td>≤ 0.001 mg/m³</td>
<td>SS-EN ISO 10580:2012 or ISO 16000-9:2006 or SS-EN 16516:2017/A1:2020 or CDPH Standard Method v1.2</td>
<td>N/A</td>
</tr>
<tr>
<td>Interior adhesives and sealants (including flooring adhesives)</td>
<td>≤ 0.06 mg/m³</td>
<td>≤ 1.0 mg/m³</td>
<td>≤ 0.001 mg/m³</td>
<td>SS-EN 13999 (part 1 – 4)*** OR ISO 16000-9:2006 OR SS-EN 16516:2017/A1:2020 OR CDPH Standard Method v1.2</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 15: Exemplary level emission criteria by product type

<table>
<thead>
<tr>
<th>Product type</th>
<th>Emission limit* Formaldehyde</th>
<th>Total volatile organic compounds (TVOC)</th>
<th>Total semi-volatile organic compounds (TSVOC)</th>
<th>Category 1A and 1B carcinogens</th>
<th>Testing requirement (see CN3.3 and CN3.4)</th>
<th>Additional requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior paints and coatings</td>
<td>≤ 0.01 mg/m³</td>
<td>≤ 0.3 mg/m³</td>
<td>≤ 0.1 mg/m³</td>
<td>≤ 0.001 mg/m³</td>
<td>SS-EN 16402:2019 or ISO 16000-9:2006 or SS-EN 16516:2017/A1:2020 or CDPH Standard Method v1.2**</td>
<td>Meet VOC content limits (Table 16). Paints used in wet areas (e.g. bathrooms, kitchens, utility rooms) should protect against mould growth (see CN3.5).</td>
</tr>
<tr>
<td>Wood-based products (including wood flooring)</td>
<td>≤ 0.01 mg/m³</td>
<td>≤ 0.3 mg/m³</td>
<td>≤ 0.1 mg/m³</td>
<td>≤ 0.001 mg/m³</td>
<td>ISO 16000-9:2006 OR SS-EN 16516:2017/A1:2020 or CDPH Standard Method v1.2** OR EN 717-1:2004 (formaldehyde emissions only)</td>
<td>N/A</td>
</tr>
<tr>
<td>Flooring materials (including floor levelling compounds and resin flooring)</td>
<td>≤ 0.01 mg/m³</td>
<td>≤ 0.3 mg/m³</td>
<td>≤ 0.1 mg/m³</td>
<td>≤ 0.001 mg/m³</td>
<td>SS-EN ISO 10580:2012 or ISO 16000-9:2006 or SS-EN 16516:2017/A1:2020 or CDPH Standard Method v1.2**</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Compliance with emission limits shall be demonstrated after 28 days in an emission test chamber ** Standard method for the testing and evaluation of volatile organic chemical emissions from indoor sources using environmental chambers, version 1.1 (Emission testing method for California Specification 01350) (2010). California Department of Public Health (CDPH).

Disclaimer: To comply with taxonomy requirements, it is required to use products with emission limits < 0.06 mg/m³. BREEAM-SE accepts emission limits ≤ 0.06 mg/m³ as several third-party emission testing schemes have that limit value.
Table 16: Maximum TVOC content for paints and coatings

<table>
<thead>
<tr>
<th>Product category</th>
<th>Free TVOC content of ready-to-use product (g/l)</th>
<th>Testing requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior matt walls and ceilings (Gloss <25°@60°)</td>
<td>10</td>
<td>SS-EN ISO 11890-2:2020 OR ISO 17895:2005</td>
</tr>
<tr>
<td>Interior glossy walls and ceilings (Gloss >25°@60°)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Interior trim and cladding paints for wood and metal</td>
<td>90</td>
<td>ISO 17895:2005</td>
</tr>
<tr>
<td>Interior trim varnishes and wood stains, including opaque wood stains</td>
<td>65</td>
<td>Calculation based on the ingredients and raw materials</td>
</tr>
<tr>
<td>Interior minimal build wood stains</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Primers</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Binding primers</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>One-pack performance coatings</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Two-pack reactive performance coatings for specific end use such as floors</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Multi-coloured coatings</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Decorative effect coatings</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
Table 17: List of some of the approved Schemes

<table>
<thead>
<tr>
<th>Interior paints and coatings</th>
<th>Danish Indoor Climate Label (class 1)</th>
<th>Danish Indoor Climate Label (class 2)</th>
<th>EMICODE EC 1PLUS</th>
<th>EMICODE EC 1</th>
<th>EMICODE EC 2</th>
<th>Indoor Air Comfort Gold®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood-based products including wood flooring</td>
<td>Danish Indoor Climate Label (class 1)</td>
<td>Danish Indoor Climate Label (class 2)</td>
<td>Indoor Air Comfort Gold®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flooring materials (including floor levelling compounds and resin flooring)</td>
<td>Danish Indoor Climate Label (class 1)</td>
<td>Danish Indoor Climate Label (class 2)</td>
<td>EMICODE EC 1PLUS</td>
<td>EMICODE EC 1</td>
<td>EMICODE EC 2</td>
<td>Indoor Air Comfort®</td>
</tr>
<tr>
<td>Ceiling, wall, and acoustic and thermal insulation materials</td>
<td>Danish Indoor Climate Label (class 1)</td>
<td>Danish Indoor Climate Label (class 2)</td>
<td>Indoor Air Comfort Gold®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior adhesives and sealants (including flooring adhesives)</td>
<td>Danish Indoor Climate Label (class 1)</td>
<td>Danish Indoor Climate Label (class 2)</td>
<td>EMICODE EC 1PLUS</td>
<td>EMICODE EC 1</td>
<td>EMICODE EC 2</td>
<td>Indoor Air Comfort®</td>
</tr>
</tbody>
</table>
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN1 | Applicable assessment criteria | **Indoor air quality: criterion 1**
Both options: This criterion is not applicable.
 Ventilation: criteria 2 to 6
Shell only: These criteria are not applicable. Shell and core: Only criteria 3 and 4 apply.
 Emissions levels: criteria 7 to 17 and 20 to 21
Both options: These criteria are not applicable.
 Adaptability – Potential for natural ventilation: criteria 18 to 19
Both options: All criteria relevant to the building type and function apply. |
| CN1.1| Ventilation systems.
See criteria 3 and 4. | Shell and core:
Where ventilation systems are not within the remit of the shell and core developer, compliance can be demonstrated through the building servicing strategy where this is predetermined by the built form or core services provision as appropriate to the shell and core option being followed. |
| CN1.2| Emissions levels: criteria 7 to 10 and 20 to 21 | In cases where the number of product types installed in the building is less than what the criterion specifies, a green fit-out agreement (see Appendix C) can be used to show compliance with the criteria. This rule applies only to those areas of the building that the scope of the green fit-out agreement covers. |

Residential - Partially fitted and fully fitted

| CN2 | Applicable assessment criteria – Single and multiple dwellings | **Indoor air quality plan: criterion 1**
Both options: This criterion is not applicable.
 Ventilation: criteria 2 to 6
Both options: Criteria 3 and 4 only apply.
 Emissions from building products: criteria 7 to 10
Both options: Criterion 8 (or 10) only applies.
 Post-construction indoor air quality measurement: criteria 11 to 17
Both options: These criteria are not applicable.
 Adaptability - Potential for natural ventilation: criteria 18 to 19
Both options: All criteria relevant to the building type and function apply.
 Exemplary: criteria 20 to 21
Both options: These criteria are not applicable. |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimising sources of air pollution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN3 | National best practice standards or relevant industry standards | BBR valid version, section 6.72 (valid BBR version as regulated in building permit)
AFS 2020.1 Arbetsmiljöverkets; Arbetsplatsens utformning (where applicable to the building type)
Svenska inneklimateknitutet: R1 - Riktlinjer för specifikation inneklimate |
| CN3.1 | Alternative methods for demonstrating compliance with the air intake and exhaust criteria | Compliance with the criteria can be demonstrated using alternative methods (e.g. wind tunnel studies, computational fluid dynamics (CFD) modelling), if such methods demonstrate that the proposed location of intakes and exhausts prevents significant recirculation of exhaust air under typical wind conditions. |
| CN3.2 | Non-VOC emitting products | Inherently non-VOC emitting products such as brick, natural stone, concrete, ceramic tile, glass, metal surfaces, etc. do not need to be assessed and can be deemed fully compliant with the criteria, unless organic-based coatings, binders, or sealants are used in their production or finishes. |
| CN3.3 | Testing requirements for emission limits | The testing requirements for emission limits are based on the use of standardised emission test chamber methods. Perforator, flask, desiccator and other extraction-based test methods are specifically excluded. Compliance with these requirements may be met using alternative standards, where these stipulate emission test chamber methods similar to those in the standards listed in Table 14 and Table 15. BREEAM-SE Assessors must submit details of any alternative standards to SGBC for approval prior to awarding any credits for this issue. |
| CN3.4 | Accreditation of organisations performing sampling or laboratory analysis | All organisations used for sampling and analysis of indoor air or for analysis of emissions from building products must be accredited according to SS-EN ISO/IEC 17025:2018 with specific accreditation covering:
Chemical analysis: Determination of formaldehyde; Determination of VOCs.
Sampling must take place according to the instructions provided by the accredited laboratory. |
| CN3.5 | Paints used in wet areas | Evidence must be provided to show that paints used in wet areas protect against mould growth. Evidence could include appropriate test results (e.g. fungal or algal resistance testing) or manufacturer’s product information or declaration. There are European standard tests which could be used: SS-EN 15457.2014 and SS-EN 15458.2014. Compliance can also be shown by reporting that the product complies with the Måleribranschen wet areas control (MVK). Approved wet area systems for painting are listed at www.vatrumsmalning.se together with authorized companies. In order for a system (fabric, glue and paint) to be approved for use, they must be functionally tested by an accredited lab and then approved by the MVK board. |
| CN3.6 | Third party certification schemes for emission levels from building products | Third party certification schemes for emission levels from building products can be used as evidence to demonstrate compliance with the criteria. Table 17 lists some of the approved schemes for emissions from building products that have been assessed to show equivalent or better performance than the criteria. If assessors, clients or scheme operators wish to seek recognition of other schemes not currently listed, please contact SGBC at breeam@sgbc.se. |
| CN3.7 | Products used in small quantities for ad hoc purposes | All products specified for a project that fall within one of the product types listed in Table 14 and Table 15 must be assessed under this issue. However, it is accepted that it may be difficult to control the specification of some products (e.g. sealants) that are used in small quantities for ad hoc purposes such as ‘making good’. As such, any products used in this way do not need to be assessed for this issue. The BREEAM-SE Assessor should use their judgment to determine whether products being used or intended to be used for ad hoc purposes will be used in significant quantities and therefore need to be assessed for this issue. |
| CN3.8 | Self-declaration of emission levels from building products | Self-declaration, by manufacturers, of emission levels from building products is acceptable if testing has been performed by an accredited laboratory in accordance with CN3.4 or where the manufacturer declares that the product contains no formaldehyde or VOC emitting substances. |
Ref | Terms | Description
--- | --- | ---
CN3.9 | Number of product types required to comply | Where four or fewer product types are specified within the building, the number of product types that need to be assessed for the emissions criteria reduces proportionally as follows:
- Where four products are present, three must comply
- Where three products are present, two must comply
- Where two or fewer products are present, all must comply.

CN3.10 | Scope of assessment for product types installed or applied within a building | Only products that are installed or applied in parts of the building where their emissions are likely to affect indoor air quality need to be assessed. For the purposes of this issue, this means any product installed or applied inside of the inner surface of the building's infiltration, vapour or waterproof membrane or, where not present, inside of the inner surface of the building envelope's interior facing thermal insulation layer.

CN3.11 | Decorative paints and varnishes | It should be noted where finishes are applied to the product within the factory, these would be assessed as part of the whole product rather than as decorative paints and varnishes. The product as a whole must meet the requirements, for example if a wood panel has a finish applied to it in the factory, the whole product, i.e. all elements that make up that product, including the finish, would need to comply with the requirements set for wood panel products in the issue.

CN3.12 | Furnishings | The scope of the VOC credits does not extend to furnishings, e.g. desks or shelving, it focuses on the key internal finishes and fittings integral to the building.

Post-construction indoor air quality measurement

CN3.13 | Post-completion testing and KPI | When testing for VOCs post-completion and pre-occupancy, a representative sample of the building needs to be carried out. Each sample TVOC and formaldehyde measurement needs to achieve the threshold levels individually, either in the initial testing or after remedial measures have been implemented. This ensures that all tested areas of the building are below the limits, and that areas of non-compliance are not ‘averaged out’.
'When providing KPI test results for air quality post-construction / pre-occupancy within scoring and reporting tool, where the limits are exceeded and remediation and re-testing are carried out, the figure should be an average for the whole building post-remediation, as this is the key figure that reflects the building at its certified state'.

Adaptability - Potential for natural ventilation

CN3.14 | Mechanically ventilated or cooled buildings. See criteria 18 and 19. | Buildings that employ a mechanically ventilated or cooled strategy are still able to achieve this credit provided it can be demonstrated that the features required by the criteria can be made easily available to the building user, e.g. windows fixed shut for an air-conditioned strategy can be modified to be opening windows. The aim of the potential for natural ventilation criteria is to ensure that a building is capable of providing fresh air using a natural ventilation strategy.
Where the building is predominantly naturally ventilated, but mechanical ventilation is necessary to boost ventilation during peak conditions, (i.e. either maximum occupancy, peak temperature conditions or both) due to the function or specific usage patterns of the building, the potential for the natural ventilation credit can still be awarded provided calculations or modelling demonstrate that the mechanical ventilation system will be required for ≤ 5% of the annual occupied hours in the occupied spaces for the adopted building design or layout.

CN3.15 | Levels of ventilation. See criterion 19. | The two levels of ventilation must be able to achieve the following:
- Higher level: higher rates of ventilation achievable to remove short term odours or prevent summertime overheating
- Lower level: BBR compliant levels of draught-free fresh air to meet the need for good indoor air quality throughout the year, sufficient for the occupancy load and the internal pollution loads of the space.
Reference Table

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN4</td>
<td>Industrial buildings without offices</td>
<td>If the building does not contain any office areas, this issue should be filtered out.</td>
</tr>
<tr>
<td>CN4.1</td>
<td>Retail buildings without offices</td>
<td>The Adaptability - Potential for natural ventilation credit applies only to office areas. If the building does not contain any office areas, this credit is filtered out.</td>
</tr>
</tbody>
</table>

Methodology

None.

Evidence

Minimising Indoor air pollution

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–6</td>
<td>A copy of the indoor air quality plan. Relevant section or clauses of the building specification or contract. Design drawings.</td>
<td>A copy of the indoor air quality plan. BREAM-SE Assessor’s site inspection report and photographic evidence or ‘as-built’ drawings. For a naturally ventilated building, a letter from the design team or principal contractor confirming the building has been built in accordance with a design compliant with the BREAM-SE criteria. For a mechanically ventilated building, the commissioning manager’s performance testing report confirming the required fresh air rates are achieved.</td>
</tr>
<tr>
<td>7–10 and 20–21</td>
<td>A copy of the indoor air quality plan. Relevant section or clauses of the building specification or contract.</td>
<td>A copy of the indoor air quality plan. Letter from or copies of the manufacturer’s literature confirming testing standards and emissions achieved.</td>
</tr>
<tr>
<td>11–17</td>
<td>A copy of the indoor air quality plan. Commitment to carry out necessary testing post-construction.</td>
<td>A copy of the indoor air quality plan. Testing results for formaldehyde and TVOCS. Where levels are found to exceed limits, a confirmation from the project team to fulfil the requirements in accordance with criteria 15.</td>
</tr>
</tbody>
</table>

Potential for natural ventilation

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–19</td>
<td>Relevant section or clauses of the building specification or contract. A formal letter from the design team with details of the ventilation strategy and calculations or results from appropriate software modelling tools.</td>
<td>Manufacturers’ or suppliers’ literature. BREAM-SE Assessor’s site inspection report and photographic evidence* or ‘as-built’ drawings, specification and calculations OR A formal letter from the design team or principal contractor confirming no changes have occurred since design stage. *A random spot check of a selection of occupied spaces is sufficient. The assessor is not required to check each opening in all spaces or rooms.</td>
</tr>
</tbody>
</table>

*A random spot check of a selection of occupied spaces is sufficient. The assessor is not required to check each opening in all spaces or rooms.
Additional information

Relevant definitions

Areas with a large and unpredictable occupancy

The following are examples of these types of space:

- Auditoria
- Gyms
- Retail stores or malls
- Cinemas
- Waiting rooms.

Where the assessed building does not have any areas deemed to be large with an unpredictable pattern of occupancy, the criterion does not apply.

Category 1A and 1B carcinogens

Carcinogenic compounds detectable by the VOC emission testing requirements in Table 1 and Table 2 and that are classified as category 1A or 1B carcinogens in Annex VI to Regulation (EC) No. 1272/2008 on classification, labelling and packaging of substances and mixtures, which are listed as Carcinogenic VOCs in Annex G.2 of SS-EN 16516:2017/A1:2020.

Habitable or occupied room

A room used for dwelling purposes or a room in a non-dwelling occupied by people (e.g. office, hotel bedroom, classroom) but which is not used solely as a kitchen, bathroom, cellar, utility room or for storing plant or equipment.

Indoor air quality (IAQ) plan

Support for development and assessment of an Indoor Air Quality Plan: see Guidance Note 06, available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.

Occupied spaces

See relevant definition provided in issue Hea 01 Visual comfort. The following building areas, where relevant to the building type, can be excluded from the definition of occupied spaces for the potential for natural ventilation criteria:

1. Ancillary building areas, e.g. WCs, corridors, stairwells, store rooms, plant rooms
2. Swimming or hydrotherapy pools
3. Sauna, steam room or hammam (for hotel building type only)
4. Catering and small staff kitchens
5. Washrooms or changing areas
6. Laboratory or other areas where strictly controlled environmental conditions are a functional requirement of the space
7. Operational, shop floors or ancillary areas in industrial buildings.
Occupied spaces requiring local exhaust ventilation, e.g. laboratories, workshops and food technology rooms, must still demonstrate that they meet the criteria for potential for natural ventilation (unless listed as an exempted area in this definition).

Openable window area

The openable window area is defined as the geometric free ventilation area created when a ventilation opening, e.g. window, is open to its normal operational fully designed extent for ventilation purposes (i.e. this excludes open areas created when reversible windows are opened for cleaning etc.). It is not the glazed area of a façade or the glazed area of the part of the window that is openable (unless it opens fully).

Sources of external pollution

This includes, but is not limited to the following:

1. Highways and the main access roads on the assessed site
2. Car parks, delivery areas and vehicle waiting bays
3. Other building exhausts, including from building services plant, industrial or agricultural processes.

Service and access roads with restricted and infrequent access (for example roads used only for waste collection) are unlikely to represent a significant source of external pollution. These roads can therefore be excluded from the criteria of this issue. This does not include vehicle pick-up or drop-off or waiting bays.

Total semi-volatile organic compound (TSVOC)

Sum of the concentrations of identified and unidentified volatile organic compounds eluting between \(n \)-hexadecane (excluded) and \(n \)-docosane (included) on a gas chromatographic column.

Total volatile organic compound (TVOC)

Sum of the concentrations of identified and unidentified volatile organic compounds eluting between and including \(n \)-hexane and \(n \)-hexadecane on a gas chromatographic column.

Other information

Post-construction indoor air quality measurement

The measurement of formaldehyde and TVOC must be made in accordance with the relevant standards (as listed in the criteria). ISO 16000-2:2006 and ISO 16000-5 provide guidance on sampling strategies for formaldehyde and VOCs, respectively. Sampling should be performed in rooms that will be occupied for long periods of time such as bedrooms, living rooms, classrooms, offices, etc. A representative number of rooms should be sampled, rather than every room in the building. For example, in an office building, sampling of one cellular or single occupancy office should suffice to assess the indoor air quality for that type of habitable space in the building (assuming the other cellular offices have the same materials specification and ventilation strategy). In larger rooms, such as open-plan office areas, additional sampling locations may be required in order to understand
the homogeneity of the indoor environment. Uncertainties in sampling and analysis are inevitable and unavoidable, therefore it is recommended that replicate samples are taken at each sampling location (ideally a minimum of three samples for each measurement parameter). Before sampling, naturally ventilated rooms should be intensively ventilated for 15 minutes, and then outer doors and windows closed for at least 8 hours (e.g., overnight) before sampling begins with the room still closed off. For mechanically ventilated rooms, the ventilation system should be running under standard operating conditions for at least for 3 hours before sampling begins. Sampling locations should be at least 1m to 2m from a wall and at a height of between 1m to 1.5m.

This information is provided to assist project teams and BREEAM-SE Assessors on the appropriate scope of post-construction indoor air quality measurement, and, as such, is intended as guidance only and not a compliance requirement. The sampling strategy should be determined based on the advice of the appropriate person appointed to conduct the testing.
Hea 03 Safe containment in laboratories
(non-residential buildings only)

Aim

To recognise and encourage a healthy internal environment through the safe containment and removal of pollutants.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Laboratory containment devices and containment areas

1. An objective risk assessment of the proposed laboratory facilities has been carried out prior to completion of the Developed design (programhandlingsskede) to ensure that potential risks are considered in the design of the laboratory. The risk assessment should be carried out by the responsible HVAC engineer.

2. Where containment devices such as fume cupboards are specified, their manufacture and installation is carried out in accordance with the following standards for safety and performance requirement:

 2.a General purpose fume cupboards:
 • SS-EN 14175-1
 • SS-EN 14175-2
 • SS-EN 14175-3:2019
 • SS-EN 14175-4:2004
 • SIS-CEN/TS 14175-5:2006
 • SS-EN 14175-6:2006
 • SS-EN 14175-7:2012

 2.b Microbiological safety cabinets: SS-EN 12469 (for manufacture)

 2.c Clean air hoods, glove boxes, isolators and mini-environments: SS-EN ISO 14644-7:2004

One credit – Buildings with containment level 2 to 4 laboratory facilities

3. Where containment level 2 to 4 laboratory facilities are specified or present they must meet best practice safety and performance criteria and objectives. This is demonstrated as follows:

 3.a Criterion 1 has been achieved

 3.b Ventilation systems are designed in accordance with AFS 2021:1.
3.c Filters for all areas designated as containment level 2 to 4 are located outside the main laboratory space for ease of cleaning or replacement, and the filters are easily accessible by maintenance staff or technicians. Pre filters may be placed within the containment zone.

4. The design team demonstrate that ventilation and extraction of the containment facilities have been considered in accordance with SS-EN 12128.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: This issue is not applicable.</td>
</tr>
<tr>
<td>CN3</td>
<td>Building contains no laboratory containment devices</td>
<td>Please note that the laboratory and containment device criteria and credits only apply where laboratory space, fume cupboards or other containment devices are present within the assessed building. In other cases, this issue is filtered out.</td>
</tr>
</tbody>
</table>

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>A copy of the proposed laboratory facilities risk assessment. The relevant section or clauses of the building specification or contract or a formal letter from the design team. Design drawings.</td>
<td>BREEAM-SE Assessor's site inspection report and photographic evidence OR as-built drawings. Correspondence from the design team confirming installation of a compliant system. AND A copy of the manufacturers’ or suppliers’ literature or a letter from these parties confirming their cupboards and cabinets are manufactured and installed in accordance with the relevant standards.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Containment Levels

Containment Levels 2 to 4 are defined according to SS-EN 12128.

Fume cupboard or safety cabinet

Scientific equipment designed to limit a person’s exposure to hazardous fumes or biological material. Air is drawn through the enclosure of the cupboard conducting the contaminated air away from the experimental area and those using the equipment.

Risk assessment

For the purpose of the relevant laboratory criteria in this issue, a risk assessment is a systematic consideration of any activity in which there is a hazard, followed by decisions on the substances, equipment and procedures used, and on the restrictions and precautions needed to make the risk acceptably low. Below is a list of useful resources:

1. ISO 15189:2012, Medical laboratories - requirements for quality and competence
2. SS-ISO 35001:2020 (Management system for laboratory biosafety and biosecurity).

Other information

SS-EN 14175-2 Fume cupboard discharge velocity: Part 2 states that the discharge velocity from fume cupboard extracts should be at least 7m/s, but that a figure of 10m/s is preferable to ensure that the discharge will not be trapped in the aerodynamic wake of the stack. Higher discharge velocities may be required, especially in windy locations, but higher rates may cause noise problems.
Hea 04 Thermal comfort

Number of credits available

<table>
<thead>
<tr>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To ensure that appropriate thermal comfort levels are achieved through design, and controls are selected to maintain a thermally comfortable environment for occupants within the building.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Thermal comfort simulation

1. Thermal comfort has been calculated in the relevant occupied spaces through dynamic building simulation (see Relevant definitions). All seasonal variations need to be considered while performing the simulation.
2. All occupied spaces achieve PMV-index (predicted mean vote) and PPD-index (predicted percentage of dissatisfied) according to Category B requirements set out in Table A.1 of Annex A of SS-EN ISO 7730:2006.
3. The fulfilment of operating temperatures in the Swedish Public Health Agency’s general guidelines on indoor temperatures, FoHMFS 2014:17, has been demonstrated.
4. PMV and PPD indices as well as operating temperatures based on the above simulation have been reported in BREEAM-SE’s Assessment and Reporting Tool.

One credit – Adaptability – for a projected climate change scenario

5. Criteria 1 to 4 are achieved.
6. Thermal comfort has been calculated according to the same method as in Criteria 1 and demonstrates that the relevant requirements set out in criterion 2 - 3 are achieved for a projected climate change scenario (see Relevant definitions). Alternatively, the project team are permitted to demonstrate that the building can be easily adapted in the future using passive or active design solutions in order to subsequently meet the requirements.
7. Any remaining measures, passive or active, which will be implemented in the building in the future to meet criterion 6 requirements needs to be included in the operation and maintenance documentation or equivalent.
8. PMV and PPD indices as well as operative temperatures based on the above simulation are reported via the BREEAM-SE assessment scoring and reporting tool.

One credit – Thermal zoning and controls

9. Criteria 1 to 4 are achieved.
10. Thermal comfort simulation (undertaken for compliance with criteria 1 to 3) has informed the temperature control strategy for the building and its users.
11. The strategy for proposed heating or cooling systems demonstrates that it has addressed the following:

11.a Zones within the building and how the building services could efficiently and appropriately heat or cool these areas. For example, consider the different requirements for the central core of a building compared with the external perimeter adjacent to the windows.

11.b The degree of occupant control required for these zones, based on discussions with the end user (or alternatively the building type or use specific design guidance, case studies, feedback) considers:

11.b.i User knowledge of building services
11.b.ii Occupancy type, patterns and room functions (and therefore the appropriate level of control required)
11.b.iii How the user is likely to operate or interact with the systems, e.g. are they likely to open windows, access thermostatic radiator valves (TRVs) on radiators, change air-conditioning settings etc.
11.b.iv The user expectations (this may differ in the summer and winter) and degree of individual control (i.e. obtaining the balance between occupant preferences, for example some occupants like fresh air and others dislike drafts).

11.c How the proposed systems will interact with each other (where there is more than one system) and how this may affect the thermal comfort of the building occupants

11.d The need or otherwise for an accessible building user actuated manual override for any automatic systems.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN1 | Applicable assessment criteria | **Thermal comfort simulation: criteria 1 to 4**
Shell only: This issue is not applicable.
Shell and core: All criteria relevant to the building type and function apply.

Adaptability - for a projected climate change scenario: criteria 5 to 8
Shell only: These criteria are not applicable.
Shell and core: All criteria relevant to the building type and function apply.

Thermal zoning and controls: criteria 9 to 11
Both options: These criteria are not applicable. |
| CN1.1 | Thermal comfort simulation.
See criterion 1 to 4. | Shell and core:
Assumptions in the model for dynamic building simulation must be reasonable and represent typical use patterns and loads given the parameters and function of the building. Note that thermal comfort simulation may need to be completed on the basis of a typical notional layout. |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1.2</td>
<td>Adaptability – for a projected climate change scenario. See criteria 5 to 8.</td>
<td>Shell and core: Assumptions in the model for dynamic building simulation must be reasonable and represent typical use patterns and loads given the parameters and function of the building. Note that thermal comfort simulation may need to be completed on the basis of a typical notional layout.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Typical occupancy and use patterns</td>
<td>If it is not possible to confirm the number of building occupants using the building, e.g., speculative developments, then the default occupancy rates given in Table 28 in Tra 04 can be used to determine a default number of users. Where the typical use patterns are also unknown, Table 22 in Tra 01 can be used to determine the typical opening hours of different building types. The design team need to justify or validate the occupancy number and use patterns applied in the thermal model.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Alternative to calculation of air velocity</td>
<td>As an alternative to calculated air velocity as input to the PMV and PPD index, the maximum permitted air velocity according to BBR or FoHMFS 2014:17 can be assumed to be met if simplified analyses in HVAC design can show this for e.g., estimating drafts from supply air devices and windows. Otherwise, CFD calculation may be needed to calculate local air velocities.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Minimum requirement for thermal zoning and controls. See criterion 11.</td>
<td>Compliance can, when deemed sufficient to achieve the purpose of the issue, be demonstrated where zoning allows separate occupant control (within the occupied space) of each perimeter area (i.e., within 7m of each external wall) and the central zone (i.e., over 7m from the external walls). Note: The distance requirement for smaller buildings is approximate. The assessor must use sound judgment considering fully the aims of this issue, before accepting solutions in line with this CN.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Scope for thermal comfort simulation. See criterion 1.</td>
<td>Areas covered: If the size or design of the building means that it is not relevant to perform thermal comfort simulation for all areas, it is acceptable to show that the requirements are met based on a representative sample of areas and rooms. This presupposes that it can be guaranteed that the spaces that give the worst results are identified and included in the modelling. Conditions covered: Seasonal variations refer to both variations in outdoor climate and variations in usage patterns in the building, for example regarding fluctuations in the number of visitors or activities. Regarding seasonal variations, the first credit for Simulation of thermal comfort refers to a whole year-round simulation (see relevant definitions) with Sveby’s climate files. Secondly, for the credit for Adaptability – for a projected climate change scenario, the simulation must be performed as a whole-year simulation (see relevant definitions) with a future climate.</td>
</tr>
</tbody>
</table>
Building type specific

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN4</td>
<td>Industrial unit</td>
<td>The criteria for thermal comfort simulation are not applicable to industrial or warehouse storage areas. Industrial/warehouse storage areas often have specific functional requirements that affects thermal comfort. The criteria are however still relevant to other parts of the building, as applicable. For e.g., office space.</td>
</tr>
<tr>
<td>CN4.1</td>
<td>Education: Occupant controls.</td>
<td>In this issue, occupant controls are intended to be for staff use only.</td>
</tr>
</tbody>
</table>

Methodology

Thermal comfort simulation

Dynamic building simulation is normally based on so-called zone calculations where one or several rooms are part of one zone and where all zones together form a whole or part of a building. The zones heat balance is calculated time dependent (dynamically) and usually with time intervals of 1 hour or less. Climate data for the actual location constitute the building’s external conditions.

If local air velocities or temperatures in the room can be critical for the thermal comfort, e.g., there is a risk of draft from high window sections, occupied spaces in high rooms such as atriums or if it is evaluated that there is a risk of drafts due to a ventilation solution or high cooling effects then a zone model does not give sufficient resolution in the room to show this. A 3-dimensional calculation using Computational Fluid Dynamics (CFD) then might be needed to perform to obtain data about local values at critical times during the 24-hour day. The critical time can be taken from the zone model.

Projected climate change scenario

Dynamic building simulation software is used to assess the design of buildings in different climatic conditions that are specific to the current geographical location.

Climate data enables thermal analysis of buildings under current climatic conditions, but normally climate changes that can be expected over the lifetime of the building are not considered. To meet the requirements, the weather information must be based on a projected climate change scenario.

To create a climate file with projected climate one starts from a statistical normal year for the current location. The normal year need to be in the EPW file format and selected as TMY (Test Meteorological Year) based on at least 15 years back in time. The climate should refer to the area as close to the current location as possible. The climate file is created based on climate models according to IPCC AR5 or later. For some places in Sweden, the normal year climate is available to download for free at EnergyPlus website for Weather Data. Otherwise, the normal year climate can be ordered from the Integrated Environmental Solutions (IESVE) website for weatherfiles, Weathershift. When the climate file for the normal year is available, an order for a climate file with future climates is made by uploading the normal year climate to Weathershift. The future climate must be selected with the two parameters forecast year and “RCP” defined as below.
The Swedish industry standard’s climate files from Sveby intended for building energy calculations have a different format than EPW and cannot be handled by Weathershift to produce future climates. SMHI’s information on future climates is not available in a format that can be used directly for building simulations by the publication date of this BREEAM-Se manual. There is also currently no simple and robust method for converting the industry standard Sveby’s climate files into future climate scenarios.

Based on the normal year’s climate described above, the following climate scenarios shall be used to establish the projected climate change environment against which the design is evaluated.

Naturally ventilated or mechanically ventilated buildings without air conditioning

- Forecast year: 50 years after the building is completed
- Emissions scenario: RCP 4.5 and 8.5 with the 50% percentile for warm climates

Mechanically ventilated building with air conditioning

- Forecast year: 20 years after the building is completed
- Emissions scenario: RCP 4.5 and 8.5 with the 50% percentile for warm climates

The above climate data represent the minimum requirements to perform thermal comfort simulation under a climate change scenario and subsequently demonstrate compliance. Where design teams feel that added consideration of building occupant risks sensitivity to overheating is necessary, future climate data can be used that exceed the minimum requirements outlined above.

The above indicated time periods have been chosen to represent assumed life span for different building installation systems.

Longer time periods are chosen for naturally ventilated buildings or mechanically ventilated buildings without comfort cooling, as the thermal comfort in these types of buildings is affected by various building design factors such as facades and window solutions, insulation, airtightness, framework and surrounding outdoor environment, which considered together, have a longer service life span than systems where thermal comfort can also be actively affected with comfort cooling.

A shorter time period is chosen for buildings with mechanical ventilation and comfort cooling, where comfort cooling via the ventilation and room appliances affects the thermal comfort in addition to the influencing factors described above. The equipment service life span including major upgrade or refurbishments is considered to avoid over-specification of plant, which can otherwise lead to inefficient operations and large investment.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–4</td>
<td>The relevant section or clauses of the building specification, or contract or correspondence (e.g., letter, email or meeting minutes) from the design team.</td>
<td>Thermal comfort simulation reflecting any changes to the design and resultant PMV/PPD data and operating temperatures with confirmation that these are within the required limits.</td>
</tr>
<tr>
<td></td>
<td>Thermal comfort simulation with confirmation that the results are within the required limits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMV/PPD data and operating temperatures from the design team.</td>
<td></td>
</tr>
</tbody>
</table>
6–8 Thermal comfort simulation with confirmation that the results are within the required limits. PMV/PPD data and operating temperatures from the design team.

Thermal comfort simulation and evaluation results reflecting any changes to the design and resultant PMV/PPD data and operating temperatures with confirmation that these are within the required limits.

10–11 Thermal comfort strategy and results highlighting the points that have been considered and decisions taken accordingly. The relevant section or clauses of the building specification or contract. Design drawings.

As design stage. BREEAM-SE Assessor’s site inspection report and photographic evidence.

Additional information

Relevant definitions

Active design solutions

Active design refers to solutions where energy is supplied to the building to enable fulfilment of thermal comfort requirements through ventilation, comfort cooling or heating.

Dynamic building simulation

Dynamic building simulation refers to a model for time-dependent energy balance calculation of a building where input and output energy is dynamically calculated in time-interval of usually 1 hour or less. The energy balance depends on external impact loads like climate, building envelope and structure and on internal impact loads like heat gain generated from building occupants, equipment, lighting, etc. and leakage from openings, doors etc. As a result of simulation, indoor temperature, thermal comfort and the energy and power needs of the building are determined. Analyses can also be used to select appropriate system solutions for building envelope and structure, technical installations for ventilation, heating, and cooling, as well as various types of energy supply.

Occupied space

A room or space within the assessed building that is likely to be occupied for continuous 30 minutes or more by a building user. If the same term is used in other areas, for example acoustic testing, it can have a specific definition that does not correspond to this one.

Passive design solutions

Passive design uses design, materials and form to reduce or remove the need for mechanical ventilation, comfort cooling, heating, and lighting to reduce a buildings energy consumption. Examples of passive design include optimising spatial planning, orientation and maximising daylighting without exceeding thermal comfort requirements and to use thermal mass to reduce large fluctuations in indoor temperatures in an effective way.
Predicted mean vote (PMV)

PMV is a measure according to SS-EN ISO 7730:2006 to assess the average experience of the thermal comfort on a seven-point thermal sensation scale from hot and warm to cool or cold in a large group of people. The value is based on the human body’s thermal balance, which is achieved when the body’s internal heat production is equal to its heat loss to the surroundings. Several factors that affect thermal comfort includes health, physical activity, clothing, air temperature and its differences around the body, heat radiation, air velocity (draft) and humidity.

Predicted percentage dissatisfied (PPD)

The PPD is a measure according to SS-EN ISO 7730:2006 to indicate the percentage of people predicted to be thermally dissatisfied with the indoor thermal comfort, i.e., some feel too hot or too cold.

Projected climate change scenario

The IPCC’s (Intergovernmental Panel on Climate Change) Fifth Assessment Report, AR5, describes projected climate change scenarios that can be used to calculate a range of plausible alternative climate data. These climate data can be used to evaluate how different climate change scenarios at the relevant location may affect the building during the period determined. At the time of publication of this manual a new report, AR6, had been produced and climate files corresponding to that report can be expected ahead.

Representative Concentration Pathway (RCP)

RCP describes various development of the concentration of carbon dioxide in the atmosphere due to emissions. The higher value of the RCP refers to a less favourable development than the lower one. Since future developments are difficult to determine, calculations are performed with two different RCPs to obtain a variation in results.

Separate occupant control

Responsive heating or cooling controls for a particular area or zone of the building that can be accessed and operated by the individuals occupying that area or zone. Such controls will be located within, or within the vicinity of, the zone or area they control.

Thermal comfort

In SS-EN ISO 7730:2006: (Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria), ‘thermal comfort’ is defined using the calculation of PMV and PPD indices and local thermal comfort criteria.

Good thermal comfort occurs when the person feels satisfied in the surrounding thermal climate and can easily describe whether a person feels too hot or too cold. Thermal comfort is difficult to define because many environmental and personal factors affect it. Few influencing factors mainly includes the occupant’s health, physical activity, clothing, the air temperature and its differences around the body, heat radiation, air velocity (draft) and humidity. The purpose of this issue is to encourage appropriate and robust consideration of factors affecting thermal comfort and to promote the specification of appropriate occupant controls to ensure both maximum flexibility of the space and thermal comfort for the majority of the building occupants.
Whole Year-round Simulation

A whole year-round simulation means that the building is simulated considering an outdoor climate corresponding to a statistical normal year or projected year with future climate conditions, as well as the building’s daily variations in operation and use.

Since the whole year-round simulation considers daily variations of the outdoor climate, the building’s thermal mass and inertia with respect to changes in indoor temperature are also included in the calculation.

Other information

None.
Hea 05 Acoustic performance

Number of credits available	Minimum standards
4 | No

Aim
To ensure the building’s acoustic performance, including sound insulation meets the appropriate standards for its purpose.

Assessment criteria
The following is required to demonstrate compliance:

One credit
1. All acoustic parameters for sound class C according to SS 25268:2007+T1:2017 or SS 25267:2015 shall be achieved.
2. Pre-completion acoustic testing is carried out by a suitably qualified acoustician to ensure that all relevant spaces (as built) achieve the performance standards required, and any required remedial works in spaces that do not meet the standards are completed prior to handover and occupation.

OR

Two credits
3. Criterion 1–2 is achieved.
4. Two acoustic parameters for sound class B according to SS 25268:2007+T1:2017 or SS 25267:2015 shall be achieved.

OR

Three credits
5. Criterion 1–2 is achieved.
6. Four acoustic parameters for sound class B according to SS 25268:2007+T1:2017 or SS 25267:2015 shall be achieved.

OR

Four credits
7. Criterion 2 is achieved.
8. All acoustic parameters for sound class B according to SS 25268:2007+T1:2017 or SS 25267:2015 shall be achieved.
Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply (an alternative method to demonstrate compliance applies in this instance, refer to CN1.1 for further information).</td>
</tr>
<tr>
<td>CN1.1</td>
<td>Alternative means of demonstrating compliance</td>
<td>The basic built form has a large impact on the acoustic performance of the building, and in the case of a shell only or shell and core development, this aspect of the build would be outside the control of the tenant. A SQA must carry out a quantifiable assessment of the specification of the build form, construction and any external factors that are likely to affect the indoor ambient noise levels. From this assessment, the SQA must confirm that given a typical arrangement and fit-out specification for the building type, the development is likely to meet the levels required to demonstrate compliance with the BREEAM-SE criteria. Where the specific room functions and areas within the building are yet to be defined, the acoustician must base their assessment on the most sensitive room type likely to be present in the building, as a worst case. For example, in a retail assessment, where there are likely to be offices, the acoustician should make an assessment based on this scenario. One credit can be awarded where this has been achieved.</td>
</tr>
<tr>
<td>CN1.2</td>
<td>Alternative means of demonstrating compliance</td>
<td>For a Shell and Core assessment, inner walls, ceilings and flooring may not be prescribed. Therefore, another alternative mean to show compliance is to use a Green Lease Agreement. The developer/property owner must confirm that the agreement will be a requirement of tenancy in the building. If the Green Lease Agreement is used in addition to CN 1.1 all four credits are available to Shell and Core assessments.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Measure</td>
<td>The Methodology section outlines the criteria for carrying out measurements and calculations to demonstrate compliance with this BREEAM issue. The appointed acoustician must confirm that the acoustic performance has been measured/calculated in accordance with these procedures. Where the acoustician has felt it necessary to deviate from these procedures, they must give justifiable reasons why they have done so.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Rooms not listed in standard</td>
<td>The Swedish acoustic standard describes room functions with examples of typical rooms. Rooms that are not specifically listed should be allocated to the appropriate room function (according to the standard) by the acoustician with motivation if needed.</td>
</tr>
</tbody>
</table>

Methodology

Testing, measurement and calculation procedures should be performed according to SS25268:2007+T1:2017 or SS 25267:2015.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| 1, 4, 6, 8 | A copy of the design plan for each level of the building with each room/area clearly labelled. A copy of the specification clause or acousticians calculations confirming:
 • Indoor ambient noise levels in each relevant room/area.
 • The standards to which calculations/measurements have complied or are required to comply with. | Copies of acoustic field test report/results confirming:
 • The required performance levels have been achieved for each room/area of the completed building.
 • Where remedial work/actions has been carried out in order to meet the performance standards, these should be listed in the report. |
| 2 | A copy of the specification clause or a formal letter from the project team confirming:
 • A programme of pre-completion acoustic testing by a suitably qualified acoustician will be commissioned.
 • Where rooms/areas do not comply with the required levels, appropriate remedial works will be actioned and completed. | Evidence, such as a formal letter from the acoustician or their test report confirming that they meet BREEAM’s definition of a suitably qualified acoustician. A letter from the design team or main contractor confirming that any and all required remedial works have been carried out in accordance with the acoustician’s recommendations. |

Additional information

Relevant definitions

Main contractor

Please refer to the definition in Man 04.

Suitably qualified acoustician (SQA)

An individual achieving all the following items can be considered to be ‘suitably qualified’ for the purposes of a BREEAM-SE assessment.

1. Holds a degree, PhD or equivalent qualification in acoustic or sound testing.
2. Has a minimum of three years relevant experience (within the last five years). Such experience must clearly demonstrate a practical understanding of factors affecting acoustics in relation to construction and the built environment; including acting in an advisory capacity to provide recommendations for suitable acoustic performance levels and mitigation measures.

Where a SQA is verifying the acoustic measurements or calculations carried out by another acoustician who does not meet the SQA requirements, they must, as a minimum, have read and reviewed the report and confirm in writing that they have found it to:

1. Represent sound industry practice.
2. Be appropriate given the building being assessed and scope of works proposed.
3. Avoid invalid, biased and exaggerated recommendations.

Additionally, written confirmation from the third party verifier that they comply with the definition of a SQA is required.
Hea 06 Accessibility

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building type dependent</td>
<td>Yes (residential only)</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage effective measures that promote safe and secure use, and access to and from the building.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Safe access

1. Dedicated cycle lanes are provided which meet the following minimum width dimensions:
 1.a Where pedestrian and cycle routes are shared, the minimum total width of the combined path is 3.0m.
 1.b Where the cycle lane is segregated from both the pedestrian route and carriageway, the minimum width of the cycle path is 2.25m and the pedestrian path is 1.8m.
 1.c Where the cycle route forms a part of the carriageway, the minimum width of the lane is 1.7m.
2. Dedicated cycle paths provide direct access from the site entrances to any cycle storage provided, without the need to deviate from the cycle path and, if relevant, connect to off-site cycle paths (or other appropriate safe route) where these run adjacent to the development’s site boundary.
3. Footpaths on site provide direct access from the site entrances to the building entrances and connect to public footpaths off-site (where existing), providing practical and convenient access to local transport nodes and other off-site amenities (where existing).
4. Where provided, drop-off areas are designed off, or adjoining, the access road and provide direct access to pedestrian footpaths, therefore avoiding the need for the pedestrian to cross vehicle access routes.
5. Dedicated pedestrian crossings are provided where pedestrian routes cross vehicle access routes, and appropriate traffic calming measures are in place to slow traffic down at these crossing points.
6. For large developments with a high number of public users or visitors, pedestrian footpaths must be signposted to other local amenities and public transport nodes off-site (where existing).
7. The lighting for access roads, pedestrian routes and cycle lanes is compliant with the external lighting criteria defined in Hea 01 Visual comfort, i.e. in accordance with the national best practice road lighting guide.
Where vehicle delivery access and drop-off areas form part of the assessed development, the following apply:

8. Delivery areas are not directly accessed through general parking areas and do not cross or share pedestrian and cyclist routes, and other outside amenity areas accessible to building users and the general public.

9. There is a dedicated parking or waiting area for goods vehicles with appropriate separation from the manoeuvring area and staff and visitor car parking.

10. Parking and turning areas are designed for simple manoeuvring according to the type of delivery vehicle likely to access the site, thus avoiding the need for repeated shunting.

11. There is a dedicated space for the storage of refuse skips and pallets away from the delivery vehicle manoeuvring area and staff or visitor car parking (if appropriate given the building type or function).

One credit – Inclusive and accessible design (all buildings except residential)

12. The building is designed to be fit for purpose, appropriate and accessible by all potential users in accordance with BBR chapter 3 and AFS 2020:1.

13. An access strategy is developed in line with Checklist A3. The access strategy addresses, as a minimum, access to and throughout the development for all users, with particular emphasis on the following:

13.a Disabled users; addressing and proposing design solutions that remove obstacles that define disability

13.b People of different age groups, genders, ethnicity and fitness levels

13.c Parents with children (where appropriate to building use or type).

14. Facilities are provided for future building occupants and users (see CN 3.7) including, where relevant, facilities that can be shared and are accessible to members of the public or community without gaining uncontrolled access to other parts of the building (unless security processes and procedures prohibit this).

Two credits – Inclusive and accessible design (residential only)

Checklists and tables

Checklist A3.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Ref</td>
<td>Terms</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Residential - Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN2 | Applicable assessment criteria – Single dwellings | Safe access: criteria 1 to 11
Both options: These criteria are not applicable.
Inclusive and accessible design (non-residential only): criteria 12 to 14
Both options: These criteria are not applicable.
Inclusive and accessible design (residential only): criteria 15
Both options: All criteria relevant to the building type and function apply. |
| CN2.1 | Applicable assessment criteria – Multiple dwellings | Safe access: criteria 1 to 11
Both options: All criteria relevant to the building type and function apply.
Inclusive and accessible design (non-residential only): criteria 12 to 14
Both options: These criteria are not applicable.
Inclusive and accessible design (non-residential only): criteria 15
Both options: All criteria relevant to the building type and function apply. |
| **General** | | |
| CN3 | Development does not have any or very small external site areas. See criteria 1 to 11. | The safe access criteria apply only to developments that have areas external to the assessed building and within the boundary of the assessed development (regardless of whether or not that external area is or will be the responsibility of the future building occupant). This includes external parking areas. If the assessed building does not have any external areas and access to the building is direct from the public highway or footpath, i.e., there is no on site vehicle access and parking areas, then the criteria concerning safe access are not applicable. In such instances the two available credits must be assessed and awarded based on compliance with the inclusive and accessible design criteria.
Developments where external area only consists of very small surface area can also be assessed in accordance with above. Small area here refers to small external areas that often is provided for the purpose of leaving a narrow undeveloped area closest to the street regarding traffic safety or built-up character. |
| CN 3.1 | Cycle path to cycle parking area. See Criteria 2. | If it is impractical to cycle between the connecting cycle path and the building’s entrance and cycle parking, it is acceptable for cyclists to get off and drag the cycle a short distance. It needs to be clearly justified by the project that why it is impractical to build a cycle path on the current route and how safety for pedestrians and cyclists is still met. |
| CN3.2 | Covered parking area. See criteria 2 to 11. | Where the assessed building has no external areas but does have a covered parking facility, and cyclists or pedestrians or delivery vehicles access the building via this area, then the relevant safe access criteria apply, and this area must be assessed against those criteria. |
| CN3.3 | Delivery access through parking areas (smaller sites and deliveries). | Criterion 8 (delivery access through general parking areas) can be relaxed for smaller sites if it can be confirmed that the building is of an operational type and size which is likely to mean that all deliveries to the building will be made by small vans and not heavy goods vehicles. |
| CN3.4 | No vehicle delivery and manoeuvring areas. See criteria 8 to 11. | The criteria concerning vehicle delivery access are not applicable where dedicated delivery access and drop-off areas do not form part of the assessed development. |
| CN 3.5 | Dedicated parking and waiting area. See criteria 9 | Criteria 9 applies to projects with dedicated delivery- and drop-off areas. For buildings that rarely receive deliveries, this criterion do not need to be fulfilled. However, the project needs to show that they only have few deliveries a week. |
Ref | Terms | Description
--- | --- | ---
CN3.6 | Dedicated footpaths from car parking spaces | Where it is not practical to provide dedicated footpaths from each parking space within a car park, it is expected that design teams take every practical measure to ensure the safety of pedestrians. In general terms, as a minimum, a safe pedestrian route should be provided from the pedestrian exit of the car park to the building entrance. For larger car parks it would be beneficial to provide footpaths at regular intervals across it, to aid safe access from the car to the building entrance, and the design team should demonstrate that they have achieved this as far as is practical.

CN3.7 | Shared facilities | No criteria have been set in this respect as the types of space or facilities will vary according to the building size, type, use and consultation feedback. Typical facilities that could be shared with others might include:
1. Sports facilities
2. Meeting and conference rooms
3. Amenity space for staff or visitors (internal or external).

CN3.8 | Existing facilities | Where existing facilities are present on site that comply with the shared facilities assessment criteria (including the involvement of users and the community in the consultation stage), the credits can be awarded. These facilities could be within an existing building that does not form part of the assessment, provided the building is accessible to all relevant building users.

CN3.9 | Potential users of shared facilities | Potential users of shared facilities are identified as appropriate and can include all or any of the following (if relevant to the building type and use):
1. Extra-curricular users and uses
2. Local authority or other provider of local community services
3. Local residents
4. Adult education
5. Volunteer groups
6. Local businesses
7. Operators or members of clubs and community groups.

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–11</td>
<td>Design drawings (including a scaled site plan), or relevant sections of the specification highlighting all necessary compliant features and dimensions.</td>
<td>Assessor’s building or site inspection and photographic evidence confirming compliance or ‘as-built’ site plan and design details.</td>
</tr>
<tr>
<td>12–14</td>
<td>The access strategy. Design drawings, or relevant section or clauses of the building specification or contract.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence.</td>
</tr>
<tr>
<td>15</td>
<td>Drawings or a copy of the specification confirming compliance.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence or ‘as-built’ drawings.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

External site areas
Areas external to the assessed building, but within the development’s site boundary, which contain vehicle or pedestrian access roads or pathways to the building, parking, unloading and drop-off areas.

Other information
None.
Hea 08 Outdoor space (residential only)

Number of credits available	Minimum standards
1 | Yes

Aim

To provide an external space which gives occupants a sense of wellbeing.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. The outdoor space (private or semi-private) must comply with the following requirements:
 1.a Is of a size that allows all occupants to sit outside
 1.b Is accessible for all occupants, including wheelchair users
 1.c Is accessible only to occupants of designated dwellings.

2. The outdoor spaces need to be adjacent, or in close proximity to the dwellings and meet the minimum size requirements (see Compliance notes).

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Extensions to existing buildings</td>
<td>There are no additional or different requirements to those outlined above specific to extension projects.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Minimum space requirements</td>
<td>Subject to any higher requirements arising from national or municipal regulations, these are to be set at a level which is compliant with the following:</td>
</tr>
</tbody>
</table>

1. For private space: 1.5 m² per bedroom
2. For semi-private space, i.e. shared access by all dwelling occupants: 1.0 m² per bedroom.
3. For balconies: 1 person - 140*200 cm; 2 persons - 140*280 cm; 2-3 persons - 180*230 cm; 3-4 persons - 170*280 cm; 4 persons and more - 200*280 cm in accordance with SS 914222:2006. |
The following are representative examples of outdoor spaces:

1. A private garden
2. A communal garden or courtyard, providing a pleasant and secluded environment large enough for all occupants of designated dwellings to share.
3. Balconies
4. Terraces (roof or other)
5. Patios.

'Juliet' balconies generally do not comply with the criteria as they are too small to provide an external space. Enclosed areas, such as conservatories, do not comply with the criteria.

It is possible that the outdoor space provided may be accessible or used by other external users apart from the dwelling units' occupants. Therefore, the project must ensure that the minimum outdoor space requirements as mentioned under CN3.1 is provided for the dwelling units occupants, in addition to the adequate outdoor space for other external users. The space provided for dwelling occupants must also be experienced as peaceful, safe and pleasant.

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Drawings or a copy of the specification confirming: The number of bedrooms served by the outdoor space That the outdoor space meets the minimum size requirements and is located adjacent or close to the dwelling AND Where a shared outdoor space is provided, details of the security and control arrangements for access.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence or 'as- built' drawings.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

None.

Other information

None.
Hea 09 Microbial contamination

Number of credits available

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes (criterion 1 only)</td>
</tr>
</tbody>
</table>

Aim

To minimise the risk of water contamination in building services.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Building services water systems: Minimising risk of contamination

1. All water systems in the building are designed in compliance with the measures outlined in national best practice.
2. Where humidification is required, a failsafe humidification system is provided.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Shell only: These criteria are not applicable. Shell and core: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Failsafe humidification system</td>
<td>A failsafe humidification system is one where failure of the system that sterilises the water vapour results in the entire humidification system initiating a shut down. This shut down, therefore, avoids any risk of building users being exposed to untreated and potentially contaminated water until the systems failure is corrected. Steam humidification is an example of a failsafe system.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>New build extensions to existing buildings</td>
<td>If the new-build extension and existing building will share the same services or water systems, then the existing systems must be assessed against the criteria regardless of whether the existing building forms a part of the assessment or not. If the extension is served by independent systems, only these need be assessed against the assessment criteria. If it is the intention that building users of the new extension will use water systems in the existing building, then it must be confirmed that the existing systems comply with the criteria.</td>
</tr>
</tbody>
</table>
Ref | Terms | Description
--- | --- | ---
CN3.3 | Microbial contamination and the BREEAM-SE Assessor’s reporting responsibility | The BREEAM-SE Assessor is not required to confirm that the design is compliant with the relevant standards; this is the responsibility of the design team. The assessor is simply required to record, for the purposes of validation, whether or not the design team confirms it has complied.

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>The relevant section or clauses of the building specification or contract.</td>
<td>A formal letter of declaration from the design team, principal contractor or installer of the relevant systems confirming compliance. BREEAM-SE Assessor’s site inspection report and photographic evidence or as– built drawings.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Legionnaires’ disease

A type of pneumonia caused by the bacterium Legionella pneumophilia. People catch Legionnaires’ disease by inhaling small droplets of water suspended in the air, which contain the bacteria.

Water systems

For the purpose of this issue, this refers to:

1. Cooling towers
2. Evaporative condensers
3. Domestic hot and cold water systems
4. Other plant and systems containing water which is likely to exceed 20°C and which may release a spray or aerosol during operation or when being maintained, for example:
 a. Humidifiers and air washers
 b. Spa baths and pools
 c. Car or bus washes
 d. Wet scrubbers
 e. Indoor fountains and water features.

Other information

None.
Hea 10 Radon

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To encourage low levels of radon in buildings.

Assessment criteria

The following is required to demonstrate compliance:

Prerequisite

1. The building is designed and planned according to the general recommendations in the BBR Section 6.23, limiting the radon levels to maximum 200 Bq/m3 +/− 10 , air and limiting the gamma radiation to 0.3 μSv/h in occupied space.

One credit

2. The building is designed to limit maximum levels of radon to 100 Bq/ m3 +/− 10, air.

OR

Two credits

3. The building is designed to limit maximum levels of radon to 50 Bq/m3 +/− 10, air in occupied space.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>

Residential - Partially fitted and fully fitted

| CN2 | Applicable assessment criteria – Single dwellings | Both options: All criteria relevant to the building type and function apply. |
Methodology

On the website of The Swedish Radiation Safety Authority, relevant method for measuring radon can be downloaded to refer for the methodology.

Evidence

<table>
<thead>
<tr>
<th>Ref</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| All | A copy of relevant documentation confirming:
- Radon classification of the soil
- Which radon level the building is designed for
- Construction measures that will be implemented in order to assure that the building will meet this radon level | Measurements or a copy of documentation confirming that measurements of annual average radon levels will be performed during a minimum of two months (between 1st of October and 30th of April) in accordance with the methodology outlined by the Swedish Radiation Safety Authority, SSM.
A formal letter from the client confirming that if the measurement shows higher radon levels, remediation work shall be performed to meet the requirement. Remediation work should be recommended by an expert (radonsakkunnig) certified according to SP or equivalent.
Document demonstrating that radon measurements have been purchased, if no measurements yet have been made. |

Additional information

Relevant definitions

Gamma radiation

Note that 0.3 µSv/h is a threshold limit to ensure the radon level of 200 Bq/m³ in buildings. This limit might need to be set lower if aiming for lower levels of radon.

Sources of radon

Radon in soil

Classification of soil, under and around a building according to BFR R85: 1988, revised 1990.
<table>
<thead>
<tr>
<th>Type of soil</th>
<th>Radon in soil air</th>
<th>Building requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>High radon soil</td>
<td>>50 000 Bq/m³</td>
<td>Radon safe design</td>
</tr>
<tr>
<td>Normal radon soil</td>
<td>10 000-50 000 Bq/m³</td>
<td>Radon protected design</td>
</tr>
<tr>
<td>Low radon soil</td>
<td><10 000 Bq/m³</td>
<td>Traditional design</td>
</tr>
</tbody>
</table>

Fill material:
Ensure fill material used underneath and near foundation structure will not contribute to the radon level in the building by checking the origin of the material.

Building materials:
One source of radon can be aggregates used in concrete products. Ensure concrete products will not contribute to the radon level in the building by checking the aggregates.

Technical guidelines
There are no manuals showing exactly how to reach under the level of 100 or 60 Bq/m³, only how to reach under 200 Bq/m³ according to the Swedish Building Code Section 6:23. For example the manual "Radonboken - Nya byggnader", author Connie Box, Svensk Byggtjänst 2019. Instead, you have to do an assessment depending on building type, type of ventilation and soil conditions.

The Swedish Radiation Safety Authority
The Authority works proactively and preventively in order to protect people and the environment from the undesirable effects of radiation, now and in the future.

Other information
None.
7.0 Energy

Summary

This category encourages the specification and design of energy efficient building solutions, systems and equipment that support the sustainable use of energy in the building and sustainable management in the building’s operation. Issues in this section assess measures to improve the inherent energy efficiency of the building, encourage the reduction of carbon emissions and support efficient management throughout the operational phase of the building’s life.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene 01 Reduction of energy use</td>
<td>12</td>
<td>Recognise improvements in the energy performance of the building above national building regulations in relation to heating and cooling energy demand. Encourage steps taken to reduce energy demand through building design and systems specification.</td>
</tr>
<tr>
<td>Ene 02a Energy monitoring</td>
<td>2</td>
<td>Energy metering systems are installed to enable energy use to be assigned to end uses. Sub-meters can be provided at building level and with increased level of detail.</td>
</tr>
<tr>
<td>Ene 02b Energy monitoring</td>
<td>2</td>
<td>Reduction of energy use by monitoring and visualising.</td>
</tr>
<tr>
<td>Ene 03 Energy efficient lighting</td>
<td>2</td>
<td>Specification of energy efficient light fittings for internal and external areas of the development and controls to prevent use during daylight hours or when not needed.</td>
</tr>
<tr>
<td>Ene 04 Low carbon design</td>
<td>4</td>
<td>Analysis of the proposed building design and development is undertaken to identify opportunities for and encourage the adoption of passive design solutions. A feasibility study has been carried out to establish the most appropriate on site or near site low or zero carbon (LZC) energy sources for the building or development, and is specified.</td>
</tr>
<tr>
<td>Ene 05 Energy efficient cold storage</td>
<td>3</td>
<td>The refrigeration system, its controls and components have been designed, installed and commissioned in accordance with appropriate codes and standards and demonstrates a saving in indirect greenhouse gas emissions (CO$_2$e) over the course of its operational life.</td>
</tr>
<tr>
<td>Ene 06 Energy efficient transport systems</td>
<td>3</td>
<td>An analysis of the transport demand and usage patterns is undertaken to determine the optimum number and size of lifts, escalators or moving walks. Energy efficient installations are specified.</td>
</tr>
<tr>
<td>Ene 07 Energy efficient laboratory systems</td>
<td>5</td>
<td>Client engagement to determine occupant requirements and define laboratory performance criteria to optimise energy demand of the laboratory facilities. Specification of best practice energy efficient equipment and measures as appropriate.</td>
</tr>
<tr>
<td>Ene 08 Energy efficient equipment</td>
<td>2</td>
<td>Identification of the building’s unregulated energy-consuming loads which have a major impact on the total unregulated energy demand. Demonstrate a meaningful reduction in the total unregulated energy demand of the building.</td>
</tr>
<tr>
<td>Ene 10 Energy load management</td>
<td>1</td>
<td>Reduction of peak loads using smart appliance or smart control systems. This can either be done internally or by response to an external signal from the electricity supplier.</td>
</tr>
</tbody>
</table>
Ene 01 Reduction of energy use

Number of credits available	Minimum standards
12 | Yes

Aim

To recognise and encourage buildings designed to minimise operational Energy demand.

Assessment criteria

The following is required to demonstrate compliance:

Prerequisite

1. The building fulfils the Current Standards Building Energy Performance Index in accordance with the valid BBR version according to the building permit.

Energy performance

Up to 12 credits

2. The building’s Predicted Building Energy Performance Index (PBEPI) is calculated by a suitably qualified energy modelling engineer using an accepted method described in Compliance notes.

3. The assessed designs’ Predicted Building Energy Performance Index (PBEPI) is compared to the Current Standards Building Energy Performance Index (CSBEPI) of the valid BBR version according to the building permit. The percentage improvement is used to award credits according to table 18 below;

Table 18: Ene 01 – Percentage improvement and credits awarded

<table>
<thead>
<tr>
<th>BREEAM-SE 2017</th>
<th>BREEAM-Credits</th>
<th>ALL BUILDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Good</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>Min. Very Good</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20%</td>
</tr>
<tr>
<td>Min. Excellent</td>
<td>5</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>40%</td>
</tr>
<tr>
<td>Min. Outstanding</td>
<td>9</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>80%</td>
</tr>
<tr>
<td>12 + 1 exemplary credit</td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>12 + 2 exemplary credits</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

For buildings that are a part new-build part refurbished refer to Compliance Notes.
Exemplary level criteria

The following outlines the exemplary level criteria to achieve up to three exemplary credits for this BREEAM issue:

Up to two credits - Energy performance

4. The requirements for either one or two exemplary credits outlined in Table 18 within the assessment criteria above have been achieved.

One credit – Post occupancy

5. The energy model (criterion 2) is handed over to the building owner to enable further detailed energy follow-up.

Example:

Calculate the percentage improvement of the Predicted Building Energy Performance Index (PBEPI) over the Current Standards Building Energy Performance Index (CSBPI):

CSBPI* = 66 kWh/m²

PBEPI** = 53 kWh/m²

* Valid BBR version according to building permit Current Standards Building Energy Performance Index

** Predicted Building Energy Performance Index

\[
\frac{\text{CSBPI} - \text{PBEPI}}{\text{CSBPI}} \times 100 = \text{improvement}\%
\]

\[
= \frac{66 - 53}{66} \times 100 = 19.7\%
\]

Therefore 19.7% improvement = 3 Credits

Checklists and tables

Table 18.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN1 | Applicable criteria – Shell only and Shell and Core | **Energy performance, criteria 1–4**
Where the building services efficiencies are not known, for example where they are not within the remit of the shell and core developer (i.e. where services will be provided as part of the fit-out works), services complying with the user data from BEN, or Sveby guidelines when applicable, should be used for the energy modelling. |
| | | **Post occupancy, criterion 5**
Both options: All criteria relevant to the building type and function apply. |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1.1</td>
<td>Green Fit-out agreement.</td>
<td>For the purposes of this BREEAM-SE assessment, it is permissible, when conducting the energy modelling, for the design team to substitute the user data from BEN, or Sveby guidelines when applicable, for the performance specifications confirmed within a green fit-out agreement. This is permissible provided that the performance specification forms part of, or is referenced within, a fit-out agreement which is, or will be, contractually required of the tenants in their fit-out works. This rule applies only to those areas of the building that the scope of the green fit-out agreement covers. Speculative areas of the assessed building development not fitted out or covered by the scope of such an agreement must assume the minimum energy efficiency standards or backstop levels required by the relevant national building regulations in the energy model, and no better.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Extensions to existing buildings</td>
<td>Where an extension to an existing building is being assessed, and that extension uses an existing building services system, the energy modelling and percentage of improvement must be based on the building fabric of the extension and building services system that will service the new extension. This includes any existing, shared and new plants that will serve the new extension area. The energy modelling does not have to consider the existing building fabric where it will be out of the scope of the BREEAM-SE assessment. Nor does it have to consider existing service systems where they are not supplying heating, cooling or ventilation to the new extension being assessed.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Assessing part of a building</td>
<td>When an assessment covers part of a building the energy performance calculation needs to be representative to the part included. It is up to the Suitably qualified energy modelling engineer and the Assessor to justify how this has been ensured. Either a separate calculation for the part included in the certification or a combined calculation for the entire building is the most appropriate.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Suitably qualified energy modelling engineer</td>
<td>A suitably qualified energy modelling engineer must carry out the modelling. See relevant definitions for a description of the relevant qualifications. It is acceptable that the Suitably qualified energy modelling engineer has not performed the modelling provided that it is clear that he has reviewed, approved and taken full responsibility for the method and the content of the calculation and report. The expert must have met the competence requirements in the definition before the assignment has been started.</td>
</tr>
</tbody>
</table>
| CN3.3 | Recognised energy Dynamic Simulation Modelling (DSM) software | Following software packages meets the minimum requirements in terms of minimum capabilities, design features and testing to be used to assess this BREEAM issue:
• IDA Indoor Climate and Energy
• RIOUSKA
• IES VE (with local weather files)
• EnergyPlus
In order to seek approval for another DSM software, SGBC should be contacted. |
| CN3.4 | Local energy production | Building energy use should be reduced with energy from sun, wind, geothermal, air or water that is generated in the building or on its plot and used for the building’s heating, comfort cooling, domestic hot water and the building’s service energy according to valid BBR version according to building permit and BEN. |
| CN3.5 | Simulation implementation | Calculations of Predicted Energy Performance Index should be made in accordance with BBR and BEN. For residential buildings, BEN should be used for user input data. A suitably qualified energy modelling engineer (see relevant definitions) shall perform the simulation. |

Residential - Partially fitted and fully fitted

| CN2 | Applicable assessment criteria – Single and multiple dwellings | Both options: All criteria relevant to the building type and function apply. |

General

| CN3 | Extensions to existing buildings | Where an extension to an existing building is being assessed, and that extension uses an existing building services system, the energy modelling and percentage of improvement must be based on the building fabric of the extension and building services system that will service the new extension. This includes any existing, shared and new plants that will serve the new extension area. The energy modelling does not have to consider the existing building fabric where it will be out of the scope of the BREEAM-SE assessment. Nor does it have to consider existing service systems where they are not supplying heating, cooling or ventilation to the new extension being assessed. |

| CN3.1 | Assessing part of a building | When an assessment covers part of a building the energy performance calculation needs to be representative to the part included. It is up to the Suitably qualified energy modelling engineer and the Assessor to justify how this has been ensured. Either a separate calculation for the part included in the certification or a combined calculation for the entire building is the most appropriate. |

| CN3.2 | Suitably qualified energy modelling engineer | A suitably qualified energy modelling engineer must carry out the modelling. See relevant definitions for a description of the relevant qualifications. It is acceptable that the Suitably qualified energy modelling engineer has not performed the modelling provided that it is clear that he has reviewed, approved and taken full responsibility for the method and the content of the calculation and report. The expert must have met the competence requirements in the definition before the assignment has been started. |

| CN3.3 | Recognised energy Dynamic Simulation Modelling (DSM) software | Following software packages meets the minimum requirements in terms of minimum capabilities, design features and testing to be used to assess this BREEAM issue:
• IDA Indoor Climate and Energy
• RIOUSKA
• IES VE (with local weather files)
• EnergyPlus
In order to seek approval for another DSM software, SGBC should be contacted. |

| CN3.4 | Local energy production | Building energy use should be reduced with energy from sun, wind, geothermal, air or water that is generated in the building or on its plot and used for the building’s heating, comfort cooling, domestic hot water and the building’s service energy according to valid BBR version according to building permit and BEN. |

| CN3.5 | Simulation implementation | Calculations of Predicted Energy Performance Index should be made in accordance with BBR and BEN. For residential buildings, BEN should be used for user input data. A suitably qualified energy modelling engineer (see relevant definitions) shall perform the simulation. |
Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Ref</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| 1–4 | Results from and background data of the calculations should be compiled in a report including the following:
 • The maximum primary energy figure that is allowed according to the current building regulation (BBR) and information how the figure for exterior air flow ($q_{average}$) has been established
 • Presentation of simulation results of the primary energy figure allocated on different energy sources
 • Information about which energy Dynamic Simulation Modelling software (DSM) that has been used | Third party documentation, as follows:
 • PBEPI from the standard output of accredited software, required as part of demonstrating the ‘as built’ building complies with local Building Regulations.
 • ‘As built’ drawings to demonstrate that the specification used and modelled at the design stage matches the specification of the completed building.
 Note that the final rating must account for any changes to the specification during construction; and the measured air leakage rate, ductwork leakage and fan performances (as required by local Building Regulations). |

Appendices should include:
 • Personal record for the energy expert
 • Input data from the calculation software
Input data should be presented in a report. To only present files with input data from the calculation software is not accepted. The following information must be attached to the report:
 • How the building has been divided into different calculation zones
 • A_{temp} (as defined in the current building regulation (BBR))
<table>
<thead>
<tr>
<th>Ref</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Used climate data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• U-values for different parts of the building and the area of each part.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Information on thermal bridges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Air leakage input data, at a pressure at +/ - 50 Pa given in l/ (s·m²·Aom)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amount of glass area with corresponding g-values.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Values and technical properties for shading appliances and information on shading in general</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Internal heat loads from people and appliances and time schedules for these loads.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Set point for indoor temperature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ventilation data for different zones and operating time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Relevant distribution losses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Information on control systems for ventilation, heating and cooling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Principle scheme for air and heat distribution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Efficiencies for installations such as SFP for fans, efficiencies for pumps and heat recovery systems, COP for heat pumps and cooling machines.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Description of local energy production, if any.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculation results separated by room heating, heating of ventilation air, domestic/service hot water (DHW), hot water circulation, comfort cooling, service electricity, operations electricity and household appliances.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy requirements for heating, ventilation and lighting in garages are included.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy supplied from, for example, solar cells or solar collectors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management of distribution and regulatory losses and safety margin.</td>
<td></td>
</tr>
</tbody>
</table>

5. Contract or an appointment letter from the suitably qualified energy modelling engineer confirming that they agree to hand over the energy model. Evidence confirming that the energy model has been handed over to the building owner.
Additional information

Relevant definitions

Building regulations
Building regulations set standards for the design and construction of buildings to ensure the safety and health of people in or about those buildings. They also include requirements to ensure that fuel and power is conserved and facilities are provided for people, including those with disabilities, to access and move around inside buildings.

Current Standard Energy Performance Index (CSEPI)
The BFS 2017:5 BBR 25 current standard energy performance index is represented by the maximum allowed primary energy figure as defined in the valid version of the building regulations (BBR).

Energy positive building
A building where on site LZC technologies generate more energy than the building uses, on a net annual basis.

Green Fit-out agreement
A formal contractually binding agreement between a building developer or owner and their tenants. As such, a green fit-out agreement (or ‘green’ clauses or sections in a lease agreement) can be used as evidence for demonstrating compliance with the relevant BREEAM-SE issue criteria both at the interim design and final post-construction stages of assessment. The agreement should make specific reference to the specification requirements or levels claimed, and as defined by BREEAM-SE in this technical manual, where credits are awarded.

BREEAM-SE aims to encourage a mutually beneficial relationship between the shell and core developer or owner of a building and its future tenants so that the fully fitted operational building achieves performance against the highest possible environmental standards. In order to achieve this, BREEAM-SE encourages and rewards the use of formal legally binding green fit-out agreements between a developer or owner and their tenant. Where a legally binding green fit-out agreement is provided as evidence and it commits the tenant’s fit-out to meet the criteria of this BREEAM-SE issue, credits are available to be awarded.

Predicted Building Energy Performance Index (PBEPI)
The primary energy figure as defined in the valid BBR version according to building permit of the building regulations, based on a simulation using a recognised dynamic simulation modelling software.

Suitably qualified energy modelling engineer
A suitably qualified energy modelling engineer must be an experienced building energy modelling engineer with a minimum of 5 years’ experience of energy modelling, out of which at least 2 years from similar software.
Sveby guidelines
Published guidelines regarding user data can be found on Svebys webpage.

Other information

Handover of energy model post occupancy
Handover of the energy model enables further detailed energy follow-up and continuous use of the model in future refurbishments. Therefore it should be in a file format that enables the property owner to continue to use and adjust the model.
Ene 02a Energy monitoring (non-residential and residential institutions only)

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Aim

To encourage and promote the installation of energy metering, to facilitate monitoring, troubleshooting and optimization of energy use during operation.

Assessment criteria

A measurement plan shall be designed and implemented in accordance with the criteria below and based on the description under Methodology.

One credit - Sub-metering of energy at building level

1. The building’s energy use for the following items (where present) shall be sub-metered, separately from each other:
 1.a Room heating (see Relevant definitions)
 1.b Ventilation air heating (see Relevant definitions)
 1.c Room cooling (see Relevant definitions)
 1.d Ventilation air cooling (see Relevant definitions)
 1.e Hot water
 1.f Building management energy (see Relevant definitions)
 1.g Users electricity (see Relevant definitions)
 1.h HVAC losses
 1.i Renewable energy produced
 1.j Other significant energy using equipment in building management energy relevant for the building’s energy optimization (see CN 3.4).

2. Buildings with an area (A_{temp}) greater than 1000 m² must have automatic meter reading and should visualize measured energy in the building’s monitoring and management system or in other suitable energy monitoring system.

3. In smaller buildings, automatic meter reading must be installed, or prepared for, to be able to display measured energy in the building’s control and monitoring system or other suitable energy monitoring system.

4. Meters monitoring measured energy must be available to building management staff for manual reading and it must be stated (in the control and monitoring system, energy monitoring system or on the measurement schedule) what each meter in the building measures.
One point - Sub-metering with increased level of detail

5. The Sub-metering at building level credit is achieved.
6. Requirements for sub-metering
 6.a Users electricity shall be measured per tenant and for relevant functional areas – see CN 3.2.
 6.b Heat that belongs to users energy shall be measured.
 6.c Cooling that belongs to users energy shall be measured.
 6.d Fan electricity, heating and cooling for each ventilation unit are measured separately.
 6.e Energy from free cooling and recycled surplus heat shall be measured.
 6.f For each ventilation unit, the supply air temperature efficiency of the heat exchanger shall be measured (see relevant definitions).
 6.g The efficiency of the heat pump shall be measured (see Relevant definitions)
 6.h The efficiency of the cooling machine shall be measured (see Relevant definitions)
 6.i The building’s indoor temperature shall be measured for relevant spaces (see CN 3.6)
 6.j Any other significant energy using equipment falling under users energy that are relevant for the building’s energy optimization (see CN 3.4)

7. Criteria 2, 3 and 4 shall also be met for meters in criterion 6.
8. Users energy measured in 6a, b and c shall be communicated to each tenant – see CN 3.3.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shell and core (non-residential and residential institutions only)</td>
<td>Sub-metering of energy at building level: criteria 1 to 4
Shell only: These criteria are not applicable.
Shell and core: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Sub-metering with increased level of detail: criteria 5 to 8
Shell only: These criteria are not applicable.
Shell and core: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td>Residential - Partially fitted and fully fitted</td>
<td>Both options: The indicator is not applicable to housing. This is dealt with in ENE02b.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – single and multiple dwellings</td>
<td>If the extension has its own energy supply system and installation system, the requirement for the extension applies. If the extension shares an energy supply system or installation system with the existing building, the project itself can choose to measure for the entire building or only the extension</td>
</tr>
</tbody>
</table>
When certifying part of a building, the project team can decide for itself whether some of the meters are more useful at the building level or certification level when it comes to the follow-up. However, the level of detail shall not be reduced, and the choice shall be clearly justified.

Some existing functional areas that may be relevant for separate measurement are exemplified below. The list is not complete, and there may be other functional areas that are relevant.

Examples of relevant functional areas:
1. Offices
2. Laboratories
3. Garages
4. Warehouses and storage
5. Commercial kitchens
6. Larger server rooms/computer halls
7. Swimming pools or health/leisure facilities
8. Refrigerator and freezer storage
9. Areas for the manufacturing industry

Measurement by functional area does not need to take place if the tenant’s area is less than 250 m².

Measured users’ energy must be communicated to the tenants for the purpose of making them aware of and promoting energy-saving usage patterns. The communication can take the form of a display visible to the tenants or of digital information available to all tenants, e.g., via app or website. The tenants shall be able to see at least their own total user’s energy use and as divided into any functional areas in accordance with 6.a. The information shall contain historical energy use data as well as current use in real time so that the tenants shall have an understanding of how their usage patterns affect energy use.

Depending on the type of building and activities, these may include, for example: facilities for swimming pools or water therapy, other sports and leisure facilities, kitchen facilities and food preparation equipment, cold storage systems, laboratory facilities, transport systems (e.g., lifts and escalators), rehearsal rooms or theaters with large lighting ramps, dedicated computer rooms or computer halls, covered car parks, ovens or boilers, and floodlights.

Smaller water heaters at individual points of use do not need to be measured for criteria 1.e.

The purpose is to get a clearer basis for troubleshooting and energy optimization. Relevant spaces are selected in order to obtain a representative picture of the building’s indoor temperatures. More guidance can be found in Sveby Measurement Instructions (Version 2.0).

Methodology

Design of measurement plan

Detailed guidance for measurement can be found in Sveby’s Measurement Instructions (Version 2.0). This can serve as an aid in choosing which energy items need to be measured to achieve the purpose of the indicator.
Evidence

<table>
<thead>
<tr>
<th>Ref</th>
<th>Interim design phase</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Relevant parts from the building description and design drawings. Measurement schedule / measurement plan where the meters’ hierarchical relationship to each other is reported as well as which criterion the meter satisfies (see criteria 1 and 6). Description of what each meter measures shall be reported (see criterion 4). Description of the strategic definition of the measurement structure’s or measurement plan’s design.</td>
<td>The BREEAM-SE assessor’s inspection report and photo evidence or documentation.</td>
</tr>
<tr>
<td>The second point, criterion 6.a, i and j</td>
<td>Relevant parts from the building description and design drawings that inform about relevant tenants, areas and functional areas.</td>
<td></td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Room heating

Room heating refers to the measurement of heat to heat-emitting units in the rooms, for example radiators. Measurement shall take place at building level.

Heating of ventilation air

Heating of ventilation air refers to the measurement of heat to the heating units’ heating coils. Depending on whether criterion 1.b or criterion 6.d is referred to, measurement shall occur either together or per ventilation unit.

Room cooling

Room cooling refers to the measurement of cooling to cooling units in the rooms – for example, cooling baffles. Measurement shall occur at building level.

Cooling of ventilation air

Cooling of ventilation air refers to the measurement of cooling to the ventilation unit’s cooling coils. Depending on whether criterion 1.d or criterion 6.d is referred to, measurement shall occur either together or per ventilation unit.

Building management energy

Measured at building level according to BBR’s definition. This includes both property electricity and any heat or cold that does not count as heating or comfort cooling, but which still belongs to property energy in the delimitation according to the National Board of Housing, Building and Planning, e.g. ground heat.
Users’ electricity

The electricity that tenants in the building use for the function of the activity. This is defined according to BBR’s definition. Examples of user electricity is process energy, lighting, computers and white goods.

The efficiency of the heat pump

The efficiency of the heat pump refers to the ratio between heat energy emitted and electricity supplied to the heat pump, often called COP (coefficient of performance).

Efficiency of the cooling machine

The efficiency of the cooling machine refers to the ratio between cooling energy given off and electricity supplied to the cooling machine, often called EER (energy efficiency ratio).

Supply-air temperature efficiency

Supply air temperature efficiency refers to the heat exchanger’s temperature efficiency on the supply air side. Calculated by $\eta_t = (t_{\text{supply air}} - t_{\text{outdoor air}}) / (t_{\text{exhaust air}} - t_{\text{outdoor air}})$.

Other information

Output from meters

Output from meters should be meter readings. Hourly resolution is preferred.

Measurement of HVAC losses

Measurement of HVAC losses can be carried out with energy meters, where the volume part measures on the return line of the HVAC circuit and the temperature sensors measure the temperature difference between supply and return on the HVAC circuit.
Ene 02b Energy monitoring (residential only)

Number of credits available	Minimum standards
2 | No

Aim

To recognise and encourage the reduction of energy use by monitoring and visualising the energy use.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. Current electricity OR main fuel consumption for heating or cooling data are displayed to occupants through a compliant energy display device.

OR

Two credits

2. Current electricity AND main fuel consumption for heating or cooling data are displayed to occupants through a compliant energy display device.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable.</td>
</tr>
</tbody>
</table>

Residential - Partially fitted and fully fitted

| CN2 | Applicable assessment criteria – Single dwellings | Partially fitted: This issue is not applicable |
| CN2.1 | Applicable assessment criteria – Multiple dwellings | Fully fitted: All criteria relevant to the building type and function apply. |

General

| CN3 | Utility company energy monitoring equipment | Energy meters installed by a utility company that can provide the future homeowner or tenant with accurate and regular energy usage information per dwelling, can comply with this issue. |
Ref	Terms	Description
CN3.1 | Electricity is the primary fuel | Where the heating or cooling systems are fuelled by electricity and current electricity use data are displayed to occupants through a compliant energy display device, two credits may be awarded.

CN3.2 | Community heating, cooling or solid fuel systems | If it is not possible to measure the energy use based on the incoming mains supply using a compliant energy display device, a heat meter is required to be installed to measure the heat energy. The heat meter must calculate the energy use in kilowatt hours (kWh) which can then be transmitted to a compliant energy display device.

CN3.3 | Requirements for compliant energy display device | A submeter, webpage or an app need to have the following functionality to be considered to fulfil the aim of the issue.

• Display current (real time) energy use
• Display historical energy use
• Be accessible and readable to the building users

Points 1–7 under Relevant definitions should be seen as examples and not as being mandatory.

Schedule of evidence required

Ref	Interim design stage	Final post-construction stage
All | Relevant section or clauses of the building specification or contract. Design drawings. | BREEAM-SE Assessor’s site inspection report cooling, photographic evidence of the installed and functioning meter.

Additional information

Relevant definitions

Examples of compliant energy display device

An example of compliant energy system is a system comprising a self-charging sensor fixed to the incoming mains supply or supplies, to measure and transmit energy use data to a visual display unit in an accessible location. The visual display unit is capable of displaying the following information:

1. Local time
2. Current (real time) energy use (kilowatts and kilowatt hours)
3. Current (real time) estimated emissions (g/kg CO₂)
4. Current (real time) tariff
5. Current (real time) cost (per hour)
6. Visual presentation of data (i.e., non-numeric) to allow consumers to easily identify high and low levels of usage
7. Historical use data so that consumers can compare their current and previous usage in a meaningful way. This could include cumulative use data in all of the following forms: day, week or month billing period. The data can be stored internally for a minimum of two years or be connected to a separate device with automatic upload from the energy display device.
Primary fuel
The fuel used to provide the majority of heating or cooling to the dwelling under assessment.

Self-charging sensor
A sensor or transmitter powered by the mains supply to the building that transmits energy use data to a visual display unit. Long-life batteries, with a minimum life expectancy of seven years, can be used in place of a self-charging sensor or transmitter where the functionality of the system is demonstrated to be maintained by the assessor.

Other information
None.
Ene 03 Energy efficient lighting

Number of credits available	Minimum standards
2 | No

Aim

To recognise and encourage the specification of energy efficient light fittings for internal and external areas of the development.

Assessment criteria

The following is required to demonstrate compliance:

One credit – External lighting

1. The building has been designed to operate without the need for external lighting (which includes on the building, signs and at entrances).

OR alternatively, where the building does have external lighting, one credit can be awarded as follows:

2. The average initial luminous efficacy of the external light fittings within the construction zone is not less than 70 luminaire lumens per circuit Watt.

3. All external light fittings are automatically controlled for prevention of operation during daylight hours and presence detection in areas of intermittent pedestrian traffic.

One credit – Internal lighting

All the following demonstrates compliance (where provided):

4. Installed capacity W/m² for internal lighting must be less or equal to “should-values” (börvärde) specified in accordance with Swedish standards for Internal lighting levels in Ljus & Rum, Version 4 (2022). All permanently installed lighting comply.

5. Appropriate control systems are installed.

Checklists and tables

None.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)
External lighting: criterion 1 to 3
Both options: All criteria relevant to the building type and function apply.</td>
<td>Internal lighting: criterion 4 and 5
Shell only: Not applicable for Shell only</td>
<td>Shell and core: Criteria 1 to 5 are applicable for all the lighting installed by the property owner and covered by the Shell and Score scope. Lighting installed by tenants would not need to fulfill the criteria.</td>
</tr>
<tr>
<td>Residential - Partially fitted and fully fitted
External lighting: criterion 1 to 3
Both options: All criteria relevant to the building type and function apply.</td>
<td>Internal lighting: criterion 4 and 5
All criteria relevant to areas within the properties that can be equated to rooms found in public environments in Ljus & Rum, Version 4 (2022), i.e. kitchens, bathrooms, storehouse, basements, stairwells, laundry rooms etc. If internal lighting is not installed within a residential building project, the credit for internal lighting will be filtered out of the assessment.</td>
<td></td>
</tr>
<tr>
<td>General
Single building assessments on larger developments or campuses and extensions to existing buildings</td>
<td>Temporary lighting such as theatrical, stage or local display installations, where specified, can be excluded from assessment under this issue. Decorative lighting, security lighting and floodlighting must, however, not be exempt from the assessment criteria.</td>
<td>Where the building being assessed forms part of a larger development (or is an extension to an existing building) containing common areas and other buildings, the scope of the external lighting criteria applies only to external new and existing lighting within the construction zone of the assessed building.</td>
</tr>
<tr>
<td>CN3.1 Temporary lighting, decorative lighting and floodlighting</td>
<td>Emergency lighting</td>
<td>Maintained systems featuring light fittings which are also used for normal operation are assessed for this issue. Non-maintained lighting which only activates in an emergency can be excluded from the assessment.</td>
</tr>
<tr>
<td>CN3.3 Lighting Control</td>
<td>There could be areas used by pedestrians and cyclists where a presence detection could be perceived as unsafe since the pedestrian or cyclist must move into a dark zone. In these cases the lighting could be reduced to a lower level (dimmed down) instead of switched off and combined with a sensor for presence detection to have full light when someone is moving into the area. If the lighting consultant/building service engineer consider this solution applicable to an external area within the assessment, this shall be motivated in the lighting strategy and the assessor need to be satisfied with the solution of lighting control.</td>
<td></td>
</tr>
<tr>
<td>CN3.4 Ljus & rum, Version 4 (2022)</td>
<td>Includes "SS-EN 12464-1:2011 Ljus och belysning - Belysning av arbetsplatser – Del 1 Arbetsplatser". Definitions and level values shall be used in this issue.</td>
<td>Note the requirements of illuminance in Hea 01. The visual task is always crucial for the lighting design. Are visual conditions designed so that the values has to be exceeded shall reasons given for this.</td>
</tr>
<tr>
<td>CN3.5 Visual conditions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2023 SGBC and BRE Global
Appropriate control systems may use manual switching, occupancy sensors in rooms with varying usage pattern e.g. toilets, conference rooms etc. or daylight sensors in rooms with natural lighting. In some cases, more than one type of control system might be appropriate.

Actual installed lighting capacity and control systems shall be used to undertake the energy calculations for Ene 01 and Ene 04.

Methodology

Average initial luminous efficacy of the external light fittings

The individual luminous fluxes of all luminaires within the construction zone are summed (in lumens), then divided by the total circuit Watts for all the luminaires.

For lamps other than LED (light-emitting diode) lamps, the luminous flux of a luminaire using those lamps can be determined by multiplying the sum of the luminous fluxes produced by all the lamps in the luminaire by the light output ratio of the luminaire (as confirmed by the luminaire manufacturer).

Note: LED lamps are typically integral to the luminaire (LED luminaires). As such, the manufacturers' literature will encompass both lamp and luminaire as a whole.

Evidence

<table>
<thead>
<tr>
<th>Ref</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Night-time lighting levels report or any other relevant study</td>
<td>BREEAM Assessor’s site inspection report and photographic evidence or as-built drawings. Night-time lighting levels report or any other relevant study.</td>
</tr>
<tr>
<td>2–3</td>
<td>The relevant section or clauses of the building specification or contract. Design drawings.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence or as-built drawings. Manufacturers’ product details.</td>
</tr>
<tr>
<td>4–5</td>
<td>Marked-up design plans showing: Lighting specification or lighting designer’s confirming installed W/m² Type of control systems.</td>
<td>As design stage, but ‘as built’ documentation. AND BREEAM-SE Assessor’s site inspection report and manufacturers’ product details confirming technical specification for the installed internal light fittings and control systems.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Automatic control
An automatic external lighting control system that prevents operation during daylight hours through either a time switch or a daylight sensor (a manually switched lighting circuit with daylight sensor or time switch override is also acceptable) in addition to providing presence detection in areas of intermittent traffic.

Note: for external lighting not fitted with presence detectors, time switches must provide automatic switch off of lighting after a specified curfew hour, except in cases where there is a specific requirement for lighting to be left on all night.

Construction zone
For the purpose of this issue the construction zone is defined as the site which is being developed for the BREEAM-SE- assessed building and its external site areas, i.e. the scope of the new works.

Daylight sensor
A type of sensor that detects daylight and switches lighting on at dusk and off at dawn.

Luminous efficacy in luminaire lumens per circuit Watt
The ratio between the luminous flux produced by an entire luminaire (light fitting) (in lumens) and the total power consumed by the lamps and the control gear contained within the luminaire (Watts).

Presence detector
A sensor that can turn lighting on when a presence is detected in the scanned area, and off after a present time when no presence is detected. Presence detectors must be compatible with the lamp type used as very frequent switching can reduce the life of some lamp types.

Time switch
A switch with an inbuilt clock which will allow lighting to be switched on and off at programmed times.

Other information
None.
Ene 04 Low carbon design

Number of credits available	Minimum standards
4 | Yes outstanding (one credit free of choice)

Aim

To encourage the adoption of design measures, which reduce building energy use and associated carbon emissions and minimise reliance on active building services systems.

Assessment criteria

This issue is split into two parts:

- Passive design analysis (2 credits)
- Low or zero carbon technologies (2 credit)

The following is required to demonstrate compliance:

Passive design analysis

Prerequisite

1. The first credit within issue Hea 04 Thermal comfort is achieved to demonstrate the building design can deliver appropriate thermal comfort levels in occupied spaces.
2. The project team carries out an analysis of the proposed building site during the Concept Design stage (tidigt programhandlingsskede) and identifies opportunities for the implementation of passive design solutions that reduce building energy demand (see CN3).

One credit

3. The building uses passive design measures to reduce the overall building energy demand or CO2 emissions by at least 5%, in line with the findings of the passive design analysis.

OR

Two credits

4. The building uses passive design measures to reduce the overall building energy demand or CO2 emissions by at least 10%, in line with the findings of the passive design analysis.

Low and zero carbon technologies

One credit – Low zero carbon feasibility study

5. A feasibility study has been carried out by the completion of the Concept Design stage (tidigt programhandlingsskede) by an energy specialist (see Relevant definitions) to establish the most appropriate recognised low or zero carbon (LZC) energy sources for the building or development.
One credit – CO₂ emissions reduction

6. A LZC technology has been specified for the building or development in line with the recommendations of this feasibility study, resulting in a 5% CO₂ emissions reduction.

Exemplary level criteria
The following outlines the exemplary level criteria to achieve up to five exemplary credits for this BREEAM issue:

One credit

7. Criterion 5 is achieved.
8. A LZC technology has been specified for the building or development in line with the recommendations of this feasibility study, resulting in a 10% CO₂ emissions reduction.

OR

Two credits

9. Criterion 5 is achieved.
10. A LZC technology has been specified for the building or development in line with the recommendations of this feasibility study, resulting in a 25% CO₂ emissions reduction.

OR

Three credits

11. Criterion 5 is achieved.
12. A LZC technology has been specified for the building or development in line with the recommendations of this feasibility study, resulting in a 50% CO₂ emissions reduction.

OR

Four credits

13. Criterion 5 is achieved.
14. A LZC technology has been specified for the building or development in line with the recommendations of this feasibility study, resulting in a 75% CO₂ emissions reduction. 5% of this reduction should be locally installed LZC technology (on site or near site).

OR

Five credits

15. The first credit for low zero carbon feasibility study is achieved.
16. A LZC technology has been specified for the building or development in line with the recommendations of this feasibility study, resulting in a 100% reduction CO₂ emissions
reduction in terms of ALL energy demands (building services, operational and process energy demand), i.e., true zero carbon building. 5% of this reduction should be locally installed LZC technology (on site or near site).

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN1 | Applicable assessment criteria | Shell and core (non-residential and residential institutions only)
Passive design analysis: criteria 1 to 4
Shell only: All criteria relevant to the building type and function apply.
Note:
For criterion 1, although Hea 04 is not applicable to Shell only assessments, to achieve Ene 04 Passive design credits, compliance with Hea 04 criteria 1, 2 and 3 must be demonstrated. This should be based on a typical layout and equipment specification for the relevant building type. Where Hea 04 is not applicable to the building type and options selected (for example, an industrial building with no office areas), criterion 1 of Ene 04 is not applicable.
Shell and core: All criteria relevant to the building type and function apply.
LZC feasibility study: criteria 5 to 6
Shell only: All criteria relevant to the building type and function apply.
Note:
The LZC feasibility study must be completed as part of the shell only design, based on the expected building use and loads specified in the design brief or, where these are not specified, for likely scenarios.
The built form should allow for the future installation of the most cost effective LZC options and this can be achieved by demonstrating that: sufficient space and clearance for the installation of future LZCs has been considered, the built form is suitably sited, and that mass and orientation are optimised for the future systems.
Shell and core: All criteria relevant to the building type and function apply. |

Residential - Partially fitted and fully fitted

<p>| CN2 | Applicable assessment criteria – Single and multiple dwellings | Both options: All criteria relevant to the building type and function apply. |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN3 | Passive design analysis. See criterion 2. | As a minimum, the passive design analysis should cover:
1. Site location
2. Site weather
3. Microclimate
4. Building layout
5. Building orientation
6. Building form
7. Building fabric
8. Thermal mass or other fabric thermal storage
9. Building occupancy type
10. Daylighting strategy
11. Ventilation strategy
12. Adaptation to climate change. |
| CN3.1 | Passive design analysis – Modelling the standard building when existing building elements are retained | In circumstances where an existing building element (e.g., a facade) is being retained it is acceptable to incorporate them into the modelling of the ‘standard building’ baseline, for the purpose of undertaking passive design analysis. All other building elements should be modelled according to the ‘standard building’ described in Methodology. |
| CN3.2 | LZC feasibility study. See criterion 5. | The LZC study should cover as a minimum:
1. Energy generated from LZC energy source per year
2. Carbon dioxide savings from LZC energy source per year
3. Life cycle cost of the potential specification, accounting for payback
4. Local planning criteria, including land use and noise
5. Feasibility of exporting heat or electricity or both from the system
6. Any available grants
7. All technologies appropriate to the site and energy demand of the development
8. Reasons for excluding other technologies
Where appropriate to the building type, possibility of connecting the proposed building to an existing local community CHP system, district heating or district cooling system or source of waste heat or power
OR
specifying a building or site CHP system or source of waste heat or power with the potential to export excess heat or power via a local community energy scheme. |
| CN3.3 | LZC feasibility study timing. See criterion 5. | When undertaking a feasibility study at a stage later than Concept Design (tidigt programhandlingssåkede), an additional element would need to be included in the report to highlight the local LZC energy sources which had been discounted due to the constraints placed on the project by the late consideration, and the reason for their omission. If the feasibility study discounted all local LZC as infeasible due to the late stage in the project that the study was commissioned, then the credit for the feasibility study must be withheld.
If the feasibility study was commissioned at the Concept Design stage or earlier, and in the unlikely event the study concluded that the specification of any local LZC technology was infeasible, the LZC credit could still be awarded. |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN3.4 | Recognised LZC technologies. See criterion 5. | Technologies eligible to contribute to achieving the requirements of this issue must use energy from the following sources:
- Wind
- Solar radiation (solar thermal and solar photovoltaic)
- Geothermal and hydrothermal energy sources
- Hydropower
- Biomass and biofuel
- Waste heat
- Heat or electricity from waste incineration
Note I: Air sourced heat pumps are a standard technology and heat from heat pumps is not considered to be an LZC technology for Ene 04.
Note II: District heating with content of other energy sources than the ones listed above are considered a LZC-technology in the circumstances that it generates a reduction in carbon emissions compared to the reference case. |
| CN3.5 | Waste heat from a building – related operational process. See criterion 5. | Waste heat from an operational process that takes place within the assessed building (or on the assessed site) can be considered as ‘low carbon’ for the purpose of this BREEAM-SE issue. This is on the condition that the generation of the heat from the process is integral to the assessed building. Examples of operational processes and functions include manufacturing processes, high temperature oven or kiln, compressors serving process plant, microbrewery, crematorium, testing and commissioning boilers for training or manufacture, and data centres. It does not include waste heat from IT or server rooms, which could be used as part of conventional heat recovery measures. |
| CN3.6 | Locally installed LZC technology. See criteria 14 and 16. | Locally installed LZC technology (on site or near site) means a LZC technology installed as a part of the assessed project. The locally installed LZC does not have to be owned by the property owner. |
| CN3.7 | Shared locally installed LZC technology. See criteria 14 and 16. | Shared locally installed LZC technology (on site or near site) can be used to show compliance with the criteria since this fulfils the aim of encouraging installation of LZC technology on site or near site. However, it is important that the feasibility study takes into account that the locally produced energy must be divided between the relevant parties and shows that the project is only credited with its determined share. |
| CN3.8 | Recognised energy Dynamic Simulation Modelling (DSW) software | Following software packages meets the minimum requirements in terms of minimum capabilities, design features and testing to be used to assess this BREEAM issue:
- IDA Indoor Climate and Energy
- RIUSKA
- IES VE (with local weather files)
- EnergyPlus
- Own developed calculation programs/methods
In order to seek approval for another DSM software, SGBC should be contacted. |
<p>| CN3.9 | LZC technology already available on site | For developments where there is an existing LZC energy source that can supply a compliant percentage of energy to the assessed building, a feasibility study will still have to be carried out to demonstrate that the existing technology is the most appropriate for the assessed building or development. The study should seek to identify any other options to supply a higher proportion of the building’s energy demand in addition to that supplied by the existing source. In order to be compliant, the energy from any existing LZC energy source must be offsetting the carbon from the building in addition to any existing carbon offsetting that it was established for. |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3.10</td>
<td>Emissions from electricity used (from the grid)</td>
<td>All electricity used (from the grid) shall be calculated as the emissions presented for Swedish electricity mix by the National Board of Housing, Building and Planning’s (Boverkets) climate database. The data is representative for the electricity that is consumed in Sweden, with consideration taken to export and import. Electricity with an environmental label is not accepted.</td>
</tr>
<tr>
<td>CN3.11</td>
<td>District heating – sources of emission levels</td>
<td>The average CO(_2)-emissions for the local district heating scheme shall be taken from rolling three years average of the published values (stated as greenhouse gases with the unit g CO(_2) eq/kWh) on Swedenergy's (Energiföretagen Sverige's) webpage. When using the excel sheet on Swedenergy’s webpage (on Environmental Assessment of District heating, i.e. Miljövärdering av fjärrvärme), the mean value from the last three years must be calculated manually. Emissions from production and transports of fuel should not be included. Products with an environmental label are not accepted. If the statistics are not complete, the energy supplier must provide these statistics based on the same calculation method as used by Swedenergy. If there is a valid and registered EPD for the district heating, emission data from the EPD is also allowed as a source for emission data. No other values than these may be used.</td>
</tr>
<tr>
<td>CN3.12</td>
<td>District cooling – sources of emission levels</td>
<td>If there is a valid and registered EPD for the district cooling, emission data from the EPD is an allowed source for emission data. If the project wants to propose an alternative method for calculation of district cooling emission levels the Assessor needs to contact SGBC at breeam@sgbc.se.</td>
</tr>
<tr>
<td>CN3.13</td>
<td>Energy included in calculations</td>
<td>Specific energy use according to the definition of BBR should be used for the first credit and the first four exemplary credits (i.e. equivalent to the definition of PBEPI in Ene 01). For the fifth exemplary credit, all energy to the building should be included, i.e. specific energy use and operational energy according to the definitions in BBR. For the operational energy normal or intended occupant data according to BEN/SVEBY should be used.</td>
</tr>
<tr>
<td>CN3.14</td>
<td>Energy exported</td>
<td>Any energy from an onsite LZC energy source that is exported to the electricity grid or a district heating or cooling system may be included in the calculations as if it were used within the building.</td>
</tr>
<tr>
<td>CN3.15</td>
<td>Building assessed as part of a larger development</td>
<td>Where the building under assessment forms part of a larger development and either a new or existing low or zero carbon (LZC) technologies installation is provided for the whole site, then the amount of LZC energy generation counted for in this issue, and subsequent CO(_2) emissions saved, should be proportional to the building's energy use compared to the total energy use for the site.</td>
</tr>
</tbody>
</table>

Methodology

Passive design analysis

Any savings resulting from the incorporation of passive design measures should be demonstrated by comparing the energy demand or CO\(_2\) emissions for the building with and without the proposed passive design measures adopted, as identified in the passive design analysis.

To enable a baseline for comparison to be established, a ‘standard building’ should be modelled with the same floor area, the same building category and containing the same building functions as the actual building. It should be a construction and layout typical for the building type with fabric performance equivalent to that of the local Building Regulations National Building energy performance, specified in National building regulations. Placement and orientations of the standard building on the location, and placement of areas of glass should be typical for the building type. Installations and user patterns must be the same as the actual building.
Any savings in energy demand or CO₂ emissions should then be calculated by comparing the respective outputs from two building models representing the proposed building specification, and the ‘standard building’ specification.

Low and zero carbon feasibility study

The demand reduction from low or zero carbon (LZC) technologies is demonstrated by comparing regulated carbon dioxide (CO₂) emissions with LZC technologies to the actual building regulated emissions without LZCs.

When the CO₂ savings are compared for different technologies, they may be estimated separately from the building energy model where appropriate, e.g., by using manufacturers’ data, simple hand calculations or spreadsheets.

The purpose is to decrease the carbon emissions through appropriate LZC technologies. The following should apply:

- The LZC technology should be recommended based on a weighted assessment of the scope in CN3.2. The most appropriate LZC technologies should be recommended, not necessarily the LZC that would result in the lowest carbon emissions if it were considered to be inappropriate.
- It is possible to recommend more than one technology, as well as combination of technologies.
- The choice of LZC technology may result in different levels of carbon reductions, and different number of credits. The number of credits per each option should be made clear in the report produced.
- Note that the feasibility study should be updated if any conditions are changed since the modelling must match the specification of the completed building, and justifications for changes must be included in the updated report.

Reference level for CO₂ emissions

For up to five credits, emissions of CO₂ are computed based on specific energy use, see CN3.13. The baseline CO₂ emissions (CO₂ baseline) should be calculated using the following method:

The CO₂ emissions for heating energy is calculated assuming an air sourced heat pump installation with a SCOP of 3.

- The CO₂ emissions for hot water energy are calculated assuming an air sourced heat pump installation with a SCOP of 2.
- The CO₂ emissions for cooling energy are calculated assuming an electrical chiller with a COP of 4.
- The CO₂ emissions for electrical energy are calculated using the average Swedish electricity mix CO₂ conversion rate. The total emissions from heating, hot water, cooling and all electricity are then divided by 0.9.
- The percentage CO₂ savings should be calculated by comparing the baseline CO₂ emission rate to the predicted CO₂ emission rate.

When calculating the energy contribution and CO₂ emissions saved from the LZC installation, the net yield of the LZC installation(s) must be used (i.e., subtract any CO₂ related to the energy used by the LZC technology itself such as pumps, inverters, controllers etc).
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Statement that the project will achieve the first credit for Hea 04 Thermal comfort.</td>
<td>As final post-construction stage for Hea 04 Thermal comfort.</td>
</tr>
<tr>
<td>2–4</td>
<td>The passive design analysis report. Evidence confirming that passive design measures to reduce the overall building energy demand, primary energy consumption or CO₂ emissions by at least the required %, has been implemented in line with the findings of the passive design analysis</td>
<td>As design stage AND BREEAM Assessor’s site inspection report and photographic evidence OR as-built drawings.</td>
</tr>
<tr>
<td>5–16</td>
<td>The LZC feasibility study (including estimated total LZC energy generation (kWh/yr), source of LZC energy, estimated calculation of building energy consumption (kWh/yr), for criterion 16 all other energy consumption including operational and process energy (kWh/yr) estimated calculation of exported energy surplus. Evidence confirming specification of a LZC technology.</td>
<td>As design stage AND BREEAM Assessor’s site inspection report and photographic evidence OR as-built drawings.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Energy positive building

A building where on site LZC technologies generate more energy than the building uses, on a net annual basis.

Energy specialist

An individual who has acquired substantial expertise or a recognised qualification for undertaking assessments, designs and installations of LZC solutions in the building sector and is not professionally connected to a single LZC technology or manufacturer.

Other information

District heating

Since the electricity mix statistics that shall be used for calculation of the reference case in Sweden consists of mainly production with low levels of CO₂ emissions, it is not possible to reach lower levels of emission using district heating with fossil fuels being a part of their ordinary energy mix. Therefore BREEAM-Se focuses on make sure the CO₂ emissions are as low as possible rather than judging what source the emissions came from.

LZC feasibility study

The LZC feasibility study in BREEAM-SE is intended to encourage the study to be done early in the project, not just before construction starts, so that the most appropriate solutions can be adopted. Also, this credit does not permit technologies that are not best practice or sustainable or cannot be modelled with a robust method.
Passive design aim

Unlike Ene 01 (which is focused on demonstrable and robust performance improvement), Ene 04 aims to encourage project teams to consider a particular design approach.

In relation to the passive design credit, this is mostly reflected in criterion 2; the passive design analysis which is intended to encourage project teams to proactively consider the ways in which the building could benefit from, and adopt passive design measures (such as those listed in CN 3).

However, to ensure that the analysis results in constructive outcomes, a minimum 5% reduction of the overall building energy demand is required to achieve one credit and a 10% reduction is required to achieve two credits.
Ene 05 Energy efficient cold storage (non-residential only)

Aim

To recognise and encourage the installation of energy efficient refrigeration systems, therefore reducing operational greenhouse gas emissions resulting from the system’s energy use.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Energy efficient design, installation and commissioning

1. With respect to the refrigeration system, its controls and components:
 1.a A strategy for the design and installation has been produced and implemented by a suitably qualified engineer from Concept Design stage onwards. The strategy is multidisciplinary and contains both an aim and a method to achieve the lowest practicable environmental impact including energy use, carbon emissions and refrigerant impact.
 1.b The design team has demonstrated that the cold store and the building has been designed to minimise heat loads through high levels of insulation, reduced air infiltration and minimisation of auxiliary heat loads, e.g. fans and pumps, lighting, people and machinery.
 1.c At least 50% of the relevant energy efficient design features (refer to CN3.1) have been specified or installed.
 1.d Control systems have been installed to minimise refrigerant temperature lifts by providing controls that optimise evaporator temperature levels and condenser temperature levels.
 1.e Energy sub-metering has been installed to provide adequate central monitoring of operating parameters and collection of data on plant performance, temperature levels and energy use. This does not necessarily require the 'energy monitoring’ credits to have been awarded.
 1.f The design has minimised the requirement for manual override of plant controls and equipment in normal operating conditions through the specification of central automatic controls, anti-tamper controls, automatic lighting controls, appropriate set-point temperature and temperature dead bands.
 1.g The design specification details appropriate commissioning and test procedures to be undertaken at completion.
 1.h The installation adheres to the design specification and any necessary changes have been carried out with the approval of the suitably qualified engineer and are formally documented.
2. The refrigeration system has been commissioned as follows:

 2.a In compliance with criteria 5–6 for ‘Commissioning’ outlined in BREEAM-SE issue Man 04 Commissioning and handover. This does not necessarily require the ‘Commissioning’ credits to have been awarded.

 2.b Documentation has been provided showing due diligence and compliance with test and commissioning procedures relevant to the installation, such as pressure testing, leakage testing and validation to specification.

One credit – Energy efficiency criteria

3. The refrigeration system uses robust and tested components that meet published energy efficiency criteria (refer to CN3.2).

One credit – Indirect greenhouse gas emissions

4. Criteria 1 and 2 are achieved.

5. The installed refrigeration system demonstrates a saving in indirect operational greenhouse gas emissions (kg CO$_2$e) with respect to a ‘baseline’ building through specification of available technologies. The indirect emissions have been calculated using the Total Equivalent Warming Impact (TEWI) equation as defined in Methodology.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria Shell only: This issue is not applicable. Shell and core: Where cold storage systems are specified or installed, all assessment criteria relevant to the building type and function apply.</td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings Both options: This issue is not applicable to residential dwellings.</td>
<td></td>
</tr>
</tbody>
</table>

General
CN3 Scope of this BREEAM-SE issue

This issue is applicable only in instances where commercial or industrial-sized refrigeration and storage systems are specified, for example:

1. Storage and refrigeration of food in supermarkets
2. Cold storage facilities in industrial, laboratory, healthcare and other buildings.

The criteria do not apply to:

1. Residential-scale refrigeration
2. Refrigeration for kitchen and catering facilities.

These types of installation are covered within BREEAM-SE issue Ene 08 Energy efficient equipment. If the building contains no refrigeration systems which stand-alone, i.e. are not integral to the building and served by the building services, this issue is not applicable to the assessment.

CN3.1 Energy efficient design features

Below are some design options that are intended to achieve best practice energy efficiency of the cold storage equipment.

1. Fit energy efficient lighting with suitable controls and high efficiency fans on evaporators.
2. Minimise loss of cold air through access doors by minimising frequency of door opening or by fitting air curtains, self-closing doors, door strips, etc.
3. Optimise evaporator temperature levels to keep suction or evaporation temperatures as high as possible.
4. Specify high efficiency compressors.
5. Provide controls on anti-sweat heaters on doors to minimise electrical use outside of operational hours.
6. Condensing temperatures that are as low as possible, including avoiding head pressure control.
7. Design evaporators and condensers for easy cleaning and safe access.
8. Optimise defrosting methods to minimise energy use and avoid electric heater defrost.
9. High evaporating temperature cabinets (large coils) with single evaporating temperatures across the refrigeration pack for supermarket display cases.
10. Provision of heat recovery in the design such as de-superheating to domestic hot water, condensing to hot water for heating. (If specified this must not lead to condensing conditions that are artificially inflated to deliver the heat recovery.)
11. Use of wet condensing-based systems.
12. Use of re-manufactured items that are still of an energy efficient nature where they do not compromise the optimal energy efficiency of the cold storage equipment.
13. Not all of these energy efficient design features will be relevant to the cold storage being assessed.

Where features are to be excluded the suitably qualified engineer must provide written justification for determining which are unachievable.
Ref CN3.2

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published energy efficiency criteria. See criterion 3.</td>
<td>Energy efficiency criteria to be met are according to Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. Alternatively, please demonstrate that the eligibility criteria are equal to or more onerous than those in the ECA Energy Technology Product List (ETPL). Where specified as part of the refrigeration system, products used for the following components must meet published energy efficiency criteria:</td>
</tr>
<tr>
<td></td>
<td>1. Air-cooled condensing units</td>
</tr>
<tr>
<td></td>
<td>2. Automatic air purgers</td>
</tr>
<tr>
<td></td>
<td>3. Cellar cooling equipment</td>
</tr>
<tr>
<td></td>
<td>4. Commercial service cabinets (cold food storage)</td>
</tr>
<tr>
<td></td>
<td>5. Curtains, blinds, sliding doors and covers for refrigerated display cabinets</td>
</tr>
<tr>
<td></td>
<td>6. Evaporative condensers</td>
</tr>
<tr>
<td></td>
<td>7. Forced air pre-coolers</td>
</tr>
<tr>
<td></td>
<td>8. Refrigerated display cabinets</td>
</tr>
<tr>
<td></td>
<td>9. Refrigeration compressors</td>
</tr>
<tr>
<td></td>
<td>10. Refrigeration system controls.</td>
</tr>
</tbody>
</table>

Ref CN3.3

Extensions to existing buildings

If the assessed building is an extension to an existing building and there is cold storage plant in the existing building that will serve the new extension, then this plant must meet the criteria in order to achieve any available credits.

Ref CN 3.4

Difference between cold storage and refrigeration appliances

If the project has commercial cold storage which is integrated in the building, i.e. it is designed and site built for the project, it should be assessed according to Ene 05. If on the other hand the project has refrigeration appliances (e.g. bigger freezers or refrigerators) that are standard products where the cooling system is integrated in the refrigeration appliances (self-contained, off-the-shelf units) these should be assessed according to Ene 08.

In the case the project has an integrated cold storage which should be assessed according to Ene 05, as expressed above, then the Assessment tool should be filled out with YES regarding the question on Commercial/Industrial refrigeration and storage systems.

Methodology

Calculating indirect greenhouse gas emissions (CO₂e) using TEWI

When calculating the Total Equivalent Warming Impact (TEWI) factor, the following equation must be used where the various areas of impact are correspondingly separated:

\[
\text{TEWI} = \text{GWP} \times L \times n + \left[\text{GWP} \times m \times (1 - \alpha_{\text{recovery}}) \right] + n \times E_{\text{annual}} \times \beta + \left[\text{GWP} \times m_i \times (1 - \alpha_i) \right]
\]

As the criteria looks only to calculate the indirect emissions from the refrigeration system, only the impact of the energy use of the system needs to be calculated:

\[
\text{TEWI (Indirect)} = n \times E_{\text{annual}} \times \beta
\]
TEWI Equation Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEWI</td>
<td>Total equivalent warming impact (kg CO₂e)</td>
</tr>
<tr>
<td>GWP × L × n</td>
<td>Impact of leakage losses</td>
</tr>
<tr>
<td>GWP × m × (1 − α<sub>recovery</sub>)</td>
<td>Impact of recovery losses</td>
</tr>
<tr>
<td>n × E<sub>annual</sub> × β</td>
<td>Impact of energy use</td>
</tr>
<tr>
<td>GWP × m₁ × (1 − α₁)</td>
<td>Global warming potential of gas in the insulation (CO₂ related)</td>
</tr>
</tbody>
</table>

GWP' | Global warming potential (CO₂ related) |

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Leakage (kg/yr)</td>
</tr>
<tr>
<td>n</td>
<td>System operating time (yr)</td>
</tr>
<tr>
<td>m</td>
<td>Refrigerant charge (kg)</td>
</tr>
<tr>
<td>α<sub>recovery</sub></td>
<td>Recovery or recycling factor between 0 and 1</td>
</tr>
<tr>
<td>E<sub>annual</sub></td>
<td>Energy use (kWh/yr)</td>
</tr>
<tr>
<td>β−</td>
<td>CO₂ emission (kg/kWh)</td>
</tr>
<tr>
<td>m₁</td>
<td>Refrigerant charge in the insulation system (kg)</td>
</tr>
<tr>
<td>α₁</td>
<td>Rate of gas recovered from the insulation at the end of life between 0 and 1</td>
</tr>
</tbody>
</table>

* The GWP is a relative measure of how much heat a greenhouse gas traps in the atmosphere, relative to CO₂. The GWP takes into account the differing time periods these gases remain in the atmosphere and their relative effectiveness in adsorbing outgoing infrared radiation.

** The conversion factor β gives the quantity of CO₂ produced by the generation of 1 kWh. It can vary considerably geographically and in terms of time.

Calculations must be carried out by a Suitably qualified engineer (e.g., a building services engineer), including calculations to justify the assumptions and methodologies for savings in indirect greenhouse emissions.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–4</td>
<td>The relevant section or clauses of the building specification or contract or other documentary evidence, such as a letter from the design team. Where not all energy efficient design features are relevant to the project, written justification of why they have been excluded from the suitably qualified engineer.</td>
<td>As design stage.</td>
</tr>
<tr>
<td>2</td>
<td>Evidence as outlined under BREEAM-SE issue Man 04 Commissioning and handover for the relevant criteria.</td>
<td>As design stage.</td>
</tr>
<tr>
<td>3</td>
<td>A letter from the manufacturer or supplier, or copies of their technical literature confirming that the specific components meet published energy efficiency criteria or a print out of the ETPL (or equivalent) listing the specific products.</td>
<td>As design stage.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

ECA Energy Technology Product List (ETPL)

The ETPL is part of the government’s Enhanced Capital Allowance Scheme, a key part of the government’s programme to manage climate change. The scheme provides a tax incentive to encourage investment in low carbon energy saving equipment that meets published energy efficiency criteria.

The Energy Technology List (ETL) details the criteria for each type of technology, and lists those products in each category that meet them. This can be found on the webpage for Department for business, energy & industrial strategy.

Indirect operational greenhouse gas emissions

These are the indirect greenhouse gas emissions that result from the production of energy used to power the refrigeration system’s cooling plant. This includes the emissions from the production of grid electricity or an on site source of energy generation, e.g. gas CHP (combined heat and power). In the case of refrigeration systems, the term ‘direct greenhouse gas emissions’ is also used; this refers to the emissions that occur as a direct result of leakage of refrigerant from the system. The impacts of direct greenhouse gas emissions from refrigeration systems are dealt with in the BREEAM-SE issue Pol 01 Impact of refrigerants. Therefore, only indirect emissions resulting from the energy use of the system are covered in this issue.

Suitably qualified engineer

An individual achieving all the following items can be considered to be ‘suitably qualified’ for the purposes of this BREEAM-SE issue:

1. Has the authority to make decisions in regards to the final design
2. Holds a degree or equivalent qualification in building services engineering or a relevant related subject
3. Has a minimum of five years relevant design experience (within the last seven years). Such experience must clearly demonstrate a practical understanding of factors affecting the design of cold storage.

Other information

None.
Ene 06 Energy efficient transport systems

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage the specification of energy efficient transport systems.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Energy use

1. Where lifts, escalators or moving walks (transport types) are specified:
 1.a An analysis of the transport demand and usage patterns for the building has been carried out to determine the optimum number and size of lifts, escalators or moving walks
 1.b The energy use has been estimated in accordance with Hissar och rulltrappor - Energiprestanda - Del 2: Energiberäkning och klassificering av hissar (SS-EN ISO 25745-2:2015) and Hissar och rulltrappor - Energiprestanda - Del 3: Energiberäkning och klassificering av rulltrappor och rullramper (SS-EN ISO 25745-3:2015), for one of the following:
 1.b.i At least two types of system (for each transport type required);
 OR
 1.b.ii An arrangement of systems (e.g., for lifts, hydraulic, traction, machine room-less lift (MRL));
 OR
 1.b.iii A system strategy which is ‘fit for purpose’.
 1.c The use of regenerative drives should be considered, subject to the requirements in CN3.3
 1.d The transport system with the lowest energy use is specified.

Two credits – Energy efficient features

2. Criterion 1 is achieved.

Lifts

3. For each lift, the following three energy efficient features are specified:
 3.a The lifts operate in a standby condition during off-peak periods. For example, the power side of the lift controller and other operating equipment such as lift car lighting, user displays and ventilation fans switch off when the lift has been idle for a prescribed length of time
3.b The lift car lighting and display lighting provides an average lamp efficacy (across all fittings in the car) of >70 lamp lumens/circuit Watt

3.c The lift uses a drive controller capable of variable speed, variable-voltage, and variable-frequency (VVVF) control of the drive motor.

4. Where the use of regenerative drives is demonstrated to save energy, they are specified.

Escalators or moving walks

Each escalator or moving walk complies with at least one of the following:

5. It is fitted with a load sensing device that synchronises motor output to passenger demand through a variable speed drive;
 OR

6. It is fitted with a passenger sensing device for automated operation (auto walk), so the escalator operates in standby mode when there is no passenger demand.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN1 | Applicable assessment criteria | Shell only: This issue is not applicable.
Shell and core: All criteria relevant to the building type and function apply. |
| **Residential - Partially fitted and fully fitted** |
| CN2 | Applicable assessment criteria
– Single and multiple dwellings | Both options: All criteria relevant to the building type and function apply. |
| **General** |
| CN3 | Scope of this issue | The criteria relating to lifts do not apply to lifting platforms, wheelchair platform stair-lifts or other similar facilities to aid persons with impaired mobility. However, any lifting device with a rated speed greater than 0.15m/s must be assessed, inclusive of goods, vehicle and passenger lifts. A demonstration of compliance with the BREEAM-SE criteria relating to the excluded transport types would be considered best practice for an energy efficient system (despite not being required for the purpose of awarding the available credits). |
| CN3.1 | Transport analysis | The transport analysis can be in the form of a written statement justifying the lift selection for the following conditions: where a single lift is provided in a low rise building for the purpose of providing disabled access only; or where a goods lift is selected based on the size of the goods it is intended to carry. BREEAM-SE recognises that lift manufacturers / suppliers are often engaged to provide such specialist advice. Where the assessor is satisfied that the analysis has been carried out correctly, the analysis can be submitted as compliant evidence. |
| CN3.2 | Building has no lifts, escalators or moving walks | This issue will not be assessed where a building contains no lifts, escalators or moving walks. Where only one of the transport systems is present, the two credits can be awarded where the one system is compliant with the relevant criteria. |
CN3.3 Regenerative drives

See criteria 1.c and 4.

A regenerative drive should only be considered where it produces an energy saving greater than the additional standby energy used to support the drives. Regenerative drives will typically be appropriate for lifts with high travel and high intensity use.

The requirements for specifying regenerative drive systems for elevators are based on assessment of potential energy savings. However, if it can be proven that it is not economically justifiable, regarding payback time during the technical life of the lift, then this requirement can be disregarded.

CN 3.4 Estimation of energy use

For all three alternatives described in criterion 1.b (i, ii and iii), two alternative energy estimations must be carried out.

Transport systems refer to transport types such as lifts, escalators or conveyor belts.

A system strategy includes all relevant types intended to be used.

For 1.b.i, two types of each necessary system must be compared, regardless of how many types of each system are planned in the building.

For 1.b.ii, the integrated system (all transport systems) must be compared with an alternative integrated system, when the type and/or supplier is decided.

For 1.b.iii, the aggregated, yet undecided system (all transport systems) must be compared with an alternative system, when the exact type and/or supplier has not been decided. It is up to the assessor to assess that the comparison is relevant.

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional report or study of transport analysis or calculations.</td>
<td>As design stage.</td>
</tr>
<tr>
<td>3–6</td>
<td>The relevant section or clauses of the building specification or contract AND EITHER Manufacturer’s product details OR A formal letter of commitment from the system’s manufacturer or supplier AND Where the regenerative drive unit is to be excluded as an energy efficient feature, written confirmation from the electricity utility supplier and the design team giving reasons for its exclusion.</td>
<td>Manufacturer’s product details. BREEAM-SE Assessor’s site inspection report and photographic evidence or as-built drawings.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Idle condition
A condition when a lift is stationary at a floor following a run before the standby mode is entered (SS-EN ISO 25745-1:2012).

Machine room-less lift (MRL)
All equipment is contained in the lift well, not in a separate machine room.

Standby condition – escalators and moving walks
A condition when the escalator or moving walk is stationary and powered on, and it can be started by authorised personnel.

Standby condition – lifts
A condition when a lift is stationary at a floor and may have reduced the power consumption to a lower level set for that particular lift (from SS-EN ISO 25745-1:2012). The period between when a lift was last used and when a standby condition is entered is defined in ISO 25745-1 as 5 minutes.

Other information

SS-EN ISO 25745- Energy performance of lifts, escalators and moving walks
SS-EN ISO 25745 consists of three parts, under the general title “Energy performance of lifts, escalators and moving walks”:

- Part 1: Energy measurement and verification
- Part 2: Energy calculation and classification for lifts (elevators)
- Part 3: Energy calculation and classification for escalators and moving walks.

In Part 1, it has been estimated that approximately 5% of a building’s total energy use can be attributed to the operation of lifts and a large proportion of this can be attributed to standby mode in many situations. ISO 25745 Parts 2 and 3 have been prepared in response to the rapidly increasing need to ensure and support the efficient and effective use of energy, providing:

1. A method to estimate energy use on a daily and an annual basis for lifts, escalators and moving walks
2. A method for energy classification of new, existing or modernised lifts, escalators and moving walks
3. Guidelines for reducing energy use that can be used to support building environmental and energy classification systems.
Ene 07 Energy efficient laboratory systems (non-residential only)

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building type dependent</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage laboratory areas that are designed to be energy efficient and have low operational energy use.

Assessment criteria

This issue is split into three parts:

- Prerequisite
- Design specification (1 credit)
- Best practice energy efficient measures (up to 4 credits), building type dependent

The following is required to demonstrate compliance:

Prerequisite

1. Criterion 1 (Risk assessment) within issue Hea 03 Safe containment in laboratories has been achieved.

One credit – Design specification

2. Client engagement is sought through consultation during the preparation of the initial project brief to determine occupant requirements and define laboratory performance criteria. Performance criteria should include, but not be limited to the following aspects:

 2.a Description of purpose
 2.b Occupant or process activities
 2.c Containment requirements and standards
 2.d Air change requirements
 2.e Ventilation system performance and efficiencies
 2.f Heating and cooling requirements (including heat recovery)
 2.g Interaction between systems
 2.h Flexibility and adaptability of laboratory facilities.

3. The design team demonstrates how they have handled requirements 2a-2f, together with the right-sizing principles of the service system equipment. They demonstrate their effort to minimise the energy demand and at the same time achieving the defined design performance criteria.
Laboratory containment devices and containment areas (criteria only applicable to buildings containing these facilities)

4. Fume cupboards and other containment devices have a specification that is compliant with criteria 2 and 3 of Hea 03 Safe containment in laboratories, as appropriate to the containment device specification.

5. Where ducted fume cupboards are newly specified or present:
 5.a Compliance with item A in Table 19
 5.b The measurement of volume flow rate should be taken in the exhaust duct (at the boundary of the laboratory) to take account of reductions in (inward) volume flow rate from fume cupboard leakage
 5.c A reduction in air flow does not compromise the defined performance criteria and therefore does not increase the health and safety risk to future building occupants.

Up to four credits – Best practice energy efficient measures

The following criteria are applicable where the laboratory area accounts for at least 10% of the total building floor area (see Relevant definitions).

6. Criteria 1 to 5 are achieved (or criteria 1 to 4 where ducted fume cupboards are not specified).

7. Laboratory plant and systems are designed, specified and installed to promote energy efficiency, demonstrated through compliance with items B to L in Table 19 (see 7.a and 7.b for how credits are awarded):
 7.a Up to two credits: the laboratory area (see Relevant definitions) accounts for at least 10% (but less than 25%) of the total building floor area;
 OR
 7.b Up to four credits: the laboratory area accounts for 25% or more of the total building floor area.

8. To achieve credits for energy efficient measures, the chosen measures must have a reasonably significant effect on the total energy use of the laboratory, i.e. 2% reduction or greater. This must be demonstrated by calculations or modelling.

9. The energy efficient measures specified do not compromise the defined performance criteria, and therefore do not increase the health and safety risk to future building occupants.

Checklists and tables

Table 19.

<table>
<thead>
<tr>
<th>Item</th>
<th>Category</th>
<th>Item description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fume cupboard reduced volume flow rates</td>
<td>An average design face velocity in the fume cupboards specified no greater than 0.5 m/s.</td>
<td>-</td>
</tr>
<tr>
<td>Item</td>
<td>Category</td>
<td>Item description</td>
<td>Credits</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>B</td>
<td>Fan power</td>
<td>Specification and achievement of best practice fan power figures (as shown below) for all air handling units (AHUs), laboratory extract systems, local extract ventilation, containment area extracts (where applicable) and fume cupboard extracts (where applicable).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Laboratory system</td>
<td>Best practice specific fan power ((W/(L/s)))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General laboratory supply air AHU with heating and cooling</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General laboratory extract systems</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory local extract ventilation - ducted</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Containment area extract, without high efficiency particulate absorption (HEPA) filtration</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Containment area extract, with HEPA filtration</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fume cupboard extract</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Fume cupboard volume flow rates (further reduction)</td>
<td>An average design face velocity no greater than 0.4 m/s.</td>
<td>0.5</td>
</tr>
<tr>
<td>D</td>
<td>Grouping or isolation of high filtration or ventilation activities</td>
<td>Minimisation of room air change rates and overall facility ventilation flows by grouping together or isolating activities and equipment with high filtration or ventilation requirements.</td>
<td>0.5</td>
</tr>
<tr>
<td>E</td>
<td>Energy recovery – heat</td>
<td>Heat recovery from exhaust air (where there is no risk of cross-contamination) or via refrigerant or water cooling systems.</td>
<td>0.5</td>
</tr>
<tr>
<td>F</td>
<td>Energy recovery – cooling</td>
<td>Cooling recovery via exhaust air heat exchangers (where there is no risk of cross-contamination) or via refrigerant or water cooling systems.</td>
<td>0.5</td>
</tr>
<tr>
<td>G</td>
<td>Grouping of cooling loads</td>
<td>Grouping of cooling loads to enable supply efficiencies and thermal transfer.</td>
<td>0.5</td>
</tr>
<tr>
<td>H</td>
<td>Free cooling</td>
<td>Specification of free cooling coils in chillers or dry air coolers related to laboratory-specific activities.</td>
<td>0.5</td>
</tr>
<tr>
<td>I</td>
<td>Load responsiveness</td>
<td>Effective matching of supply with demand through modularity, variable speed drives and pumps, and other mechanisms.</td>
<td>0.5</td>
</tr>
<tr>
<td>J</td>
<td>Clean rooms</td>
<td>Specification of particle monitoring systems, linked to airflow controls.</td>
<td>0.5</td>
</tr>
<tr>
<td>K</td>
<td>Diversity</td>
<td>Achievement of high levels of diversity in central plant sizing and laboratory duct sizing, where compatible with safety.</td>
<td>0.5</td>
</tr>
<tr>
<td>L</td>
<td>Room air change rates</td>
<td>Reducing air change rates by matching ventilation airflow rates to indoor environmental needs and demands of containment devices.</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Notes:
Only whole credits can be awarded in this issue. Therefore, to achieve a credit for items C to L (above) the laboratory must comply with at least two of the items. In an instance where, for example, three and half credits are achieved this would need to be rounded down to three credits.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Residential - Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: This issue is not applicable</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Higher education buildings, university buildings and primary and secondary level school buildings</td>
<td>Higher education and university buildings that contain laboratory space and containment devices or areas can be assessed in this issue. However, this issue is not applicable for primary and secondary level school buildings. The laboratory criteria within issue Hea 03 (Safe containment in laboratories) should be followed for assessing laboratories and containment devices in primary and secondary level school buildings. Where there are a large number of containment devices (such as fume cupboards) present in a school or college assessment, SGBC should be contacted for further guidance.</td>
</tr>
</tbody>
</table>

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 4</td>
<td>Evidence as required for compliance with the relevant Hea 03 (Safe containment in laboratories) criteria.</td>
<td>Evidence as required for compliance with the relevant Hea 03 (Safe containment in laboratories) criteria.</td>
</tr>
<tr>
<td>2–3</td>
<td>Agenda or minutes from client consultation meetings. Suitable evidence demonstrating that the design team have considered consultation feedback and any subsequent actions. The relevant section or clauses of the building specification or contract showing defined laboratory facility performance criteria.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence or as-built drawings. Supplier or manufacturers’, or design team documentation for as-built specification.</td>
</tr>
<tr>
<td>5–9</td>
<td>Drawings, and the relevant section or clauses of the building specification or contract. Modelling results or calculations or manufacturers’ information. Formal correspondence from the design team.</td>
<td>As design stage, but for as-built information. BREEAM-SE Assessor’s site inspection report and photographic evidence or as-built drawings. A commissioning report or similar demonstrating that the design containment performance and airflows have been achieved.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Laboratory areas

Laboratory areas are defined as highly serviced (temperature, ventilation, humidity or containment controlled) spaces where physical, biological, chemical processing or testing is carried out. Such areas will have inherently high energy demands. In order to maintain controlled conditions to enable experiments and comply with health and safety standards, typically laboratories:

1. contain various exhaust and containment devices (such as fume cupboards and microbiological safety cabinets).
2. are heavily serviced to circulate air and to supply heating, cooling, humidity, and clean air.
3. often require 24-hour access and failsafe redundant backup systems and uninterrupted power supply or emergency power to enable irreplaceable experiments.

Therefore, for the purpose of assessing this BREEAM-SE issue, the definition of laboratory areas excludes any laboratory support areas such as:

1. Write up or offices
2. Meeting rooms
3. Storage
4. Ancillary and other support areas with lower servicing requirements.

Teaching and other laboratory workshops with a limited amount of fume cupboards or other containment devices, or no energy intensive process equipment specified are excluded, unless the design team can provide evidence that their use is at least 50% higher than a typical office due to the laboratory process-related activities.

Typically, in buildings where 40% of the floor area is laboratory related, only 10% will actually constitute laboratory areas as per the BREEAM-SE definition. Different types of laboratories have different requirements for HVAC, plug load for small power equipment and access. This can lead to enormous variations in energy and water requirements. The main types of laboratories include:

1. Wet laboratories - where chemicals, drugs or other material or biological matter are tested and analysed requiring water, direct ventilation and specialised piped utilities. They typically include chemical science laboratories. These laboratories require specially designed facilities.
2. Dry laboratories - contain dry stored materials, electronics, or large instruments with few piped services. They typically include engineering or analytical laboratories that may require accurate temperature and humidity control, dust control, and clean power.
3. Microbiological and clinical laboratories - often involve working with infectious agents. They typically require higher levels of primary containment and multiple secondary barriers including specialised ventilation systems to ensure directional air flow, air treatment systems to decontaminate or remove agents from exhaust air, controlled access zones, airlocks as laboratory entrances, or separate buildings or modules to isolate the laboratory.
4. In vivo laboratories - these require highly controlled environments for the care and maintenance of flora and fauna. The facilities are complex, and expensive to build and to operate. Tight environmental control over the facility is required to avoid the introduction of contaminants or pathogens, and prevent the possibility of infectious outbreaks, and avoid the transmission of odours.

5. Teaching laboratories - unique to academic institutes, they require space for teaching equipment, storage space for student belongings and less instrumentation than research labs.

6. Clean rooms - refers to a controlled environment (air quality, temperature and humidity) which prevent contamination and require the regulating of environmental conditions, to facilitate accurate research and production needs. They are typically used in universities for nanotechnology, medical and pharmaceutical research or studies and microelectronics applications.

Right-sizing

Right-sizing principles encourage the use of better estimates in equipment loads from which services equipment is sized in comparison to traditional methods of estimates based on rated data obtained from manufacturers’ literature or design assumptions from previous projects. This can result in construction cost savings in addition to life cycle cost benefits, while taking account of the need for appropriate contingency.

Other information

Synergy with BREEAM-SE issue – Reduction of energy use

See Ene 01 Reduction of energy use

This BREEAM-SE issue has been developed to recognise improvements made to new laboratory areas or buildings that are not currently fully recognised in the methodology used to assess and award credits in Ene 01 Reduction of energy use.
Ene 08 Energy efficient equipment

Number of credits available	Minimum standards
2 | No

Aim

To recognise and encourage procurement of energy efficient equipment to ensure optimum performance and energy savings in operation.

Assessment criteria

The following is required to demonstrate compliance:

Two credits

1. Identify the building’s equipment energy (see Relevant definitions) and estimate its contribution to the total annual equipment energy use of the building, assuming a typical or standard specification.
2. Identify the systems or processes that use a significant proportion of the total annual equipment energy use of the development and its operation.
3. Demonstrate a meaningful reduction in the total annual equipment energy use of the building. See Table 20.

Table 20 contains solutions deemed to satisfy compliance for common examples of significant contributors to equipment energy use, for a number of different building types or functions.

Checklists and tables

Table 20 shall be used for any items that are present and significant contributors, they shall be assessed as per the criteria in the table. If other significant contributors will be specified, these should be assessed in line with CN 3.1. The solutions deemed to comply with the criteria (in the column “Criteria” in table 20) listed for each category are examples, but any alternative solution needs to be justified and the energy reduction must be accounted for through calculations or other robust evidence.

Table 20: Examples of solutions deemed to comply with the criteria for the reduction of equipment energy load from significantly contributing systems

<table>
<thead>
<tr>
<th>Ref</th>
<th>Function or equipment</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| A | Small power, plug-in equipment | The following equipment meets the criteria for, or has been awarded with, a rating from a national or international energy efficient equipment scheme:
1. Office equipment if delivered with the building
2. Other small powered equipment
3. Supplementary electric heating.
For domestic-scale white goods, the criteria in Ref F apply. |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Function or equipment</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| B | Swimming pool | 1. Where automatic or semi-automatic pool covers are fitted to ALL pools, including spa pools and hot tubs (if relevant).
2. The covers envelop the entire pool surface when fully extended.
3. Where the air temperature in the pool hall can be controlled so that it is 1°C above the water temperature. |
| C | Communal laundry facilities with commercial-sized appliances | At least one of the following can be demonstrated for commercial-sized appliances:
1. Specification of heat recovery from waste water
2. Use of greywater for part of the washing process. This may be recycled from the final rinse and used for the next pre-wash. |
| D | Data centre | 1. The design is in accordance with national or international best practice standards for energy efficiency in data centres or where no national standards exist, data centres are designed in accordance with the ‘Best practices for the EU Code of Conduct on Data Centres’ principles with the data centre achieving at least the ‘Expected minimum practice’ level (as defined in the Code of Conduct).
2. Temperature set points are not less than 24°C, as measured at the inlet of the equipment in the rack. |
| E | IT-intensive operating areas | 1. Uses a natural ventilation and cooling strategy as standard, with forced ventilation only to be used when the internal temperature exceeds 20°C and active cooling only when the internal temperature exceeds 22°C.
2. There is a mechanism to achieve automatic power down of equipment when not in use, including overnight. |
| F | Residential areas with domestic-scale appliances (individual and communal facilities) | Domestic-scale appliances have the following ratings (or better) under a national or international energy efficient white goods scheme equivalent to the updated EU Energy Efficiency Labelling Scheme (March 2021)*, where provided:
- Fridges, fridge-freezers: E rating
- Washing machines: B rating
- Dishwashers: D rating
- Wash dryers and tumble dryers: D rating
And for domestic-scale air conditioners, the following rating (or better) under a national or international energy efficient white goods scheme equivalent to the original EU Energy Efficiency Labelling Scheme
- Air conditioners: B rating
‘Domestic-scale appliances also apply for non-domestic buildings (see A, Small power, plug-in equipment). |
The project has incorporated at least two thirds of the energy efficiency measures outlined in the section summaries of each of the following sections of CIBSE Guide TM50 (except as specified):

1. Section 8 (Drainage and kitchen waste removal)
2. Section 9 (Energy controls - specifically controls relevant to appliances)
3. Section 11 (Appliance specification - not fabrication or utensil specifications)
4. Section 12 (Refrigeration)
5. Section 13 (Warewashing: dishwashers and glasswashers)
6. Section 14 (Cooking appliance selection)
7. Section 15 (Water temperatures, taps, faucets and water saving controls).

Refrigeration for kitchen and catering facilities should be assessed here, not in Ene 05 Energy efficient cold storage.

* Energy efficient white goods scheme and equivalent rating scheme (Category reference F)

Energy rating certifications other than the EU labelling scheme will be accepted, providing the energy efficiency performance is equivalent to the EU labelling scheme. This can be any internationally recognised energy efficiency labelling scheme for white goods or a national scheme developed for use in the country of assessment, for example Energy Label (in the EU), Energy Star (in the USA), The Appliance Energy Rating Scheme (in Australia), etc. A statement confirming that the scheme is nationally recognised and can be regarded as equivalent to the EU labelling scheme is required for use.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable.</td>
</tr>
</tbody>
</table>

Residential - Partially fitted and fully fitted

<p>| CN2 | Applicable assessment criteria – Single dwellings | Partially fitted: This issue is not applicable. Fully fitted: All criteria relevant to the building type and function apply, subject to the notes within section F. |
| CN2.1 | Applicable assessment criteria – Multiple dwellings | Partially fitted: This issue is not applicable. Fully fitted: All criteria relevant to the building type and function apply, subject to the notes within section F. |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Refrigeration equipment</td>
<td>The criteria in Small power, plug-in equipment apply to the following refrigeration equipment (where present):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Air-cooled condensing units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Cellar cooling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Commercial service cabinets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Curtains or blinds for refrigerated display cabinets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Refrigeration compressors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Refrigeration system controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Refrigerated display cabinets</td>
</tr>
<tr>
<td>CN3.1</td>
<td>A meaningful reduction in equipment energy demand</td>
<td>BREEAM-SE does not specify a level or percentage that defines a meaningful reduction in equipment energy demand. The project team must justify how they have determined or judged a meaningful reduction from the equipment energy demand and the assessor must be satisfied that this is an appropriate justification.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Cold storage</td>
<td>The criteria do apply to commercial kitchen refrigeration, but not to other commercial or industrial-sized refrigeration and storage systems. These systems are covered within the scope of Ene 05 Energy efficient cold storage and should be removed from the list of equipment energy loads with respect to this issue.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Lifts, escalators and moving walks</td>
<td>This issue does not apply to lifts, escalators and moving walks. These systems are covered within the scope of Ene 06 Energy efficient transport systems and should be removed from the list of equipment energy loads with respect to this issue.</td>
</tr>
<tr>
<td>CN3.4</td>
<td>Laboratory systems</td>
<td>This issue does not apply to laboratory ducted fume cupboards. These systems are covered within the scope of Ene 07 Energy efficient laboratory systems and should be removed from the list of equipment energy loads with respect to this issue.</td>
</tr>
<tr>
<td>CN3.5</td>
<td>Reuse of equipment</td>
<td>Reuse of electrical equipment does not comply by default, as it may not be the most energy efficient option. However, the credit could be awarded if the following criterion is demonstrated: Reusing the old equipment would, over the course of its remaining life, be a more energy efficient option than specifying new equipment.</td>
</tr>
<tr>
<td>CN3.6</td>
<td>Lighting</td>
<td>This issue does not apply to lighting within the property. These systems are covered within the scope of Ene 03 Energy efficient lighting and should be removed from the list of equipment energy loads with respect to this issue.</td>
</tr>
</tbody>
</table>

Methodology

Estimating annual equipment energy use

A method should be used that estimates actual energy use, based on expected equipment loads and hours of operation. The energy uses may be estimated by using simple hand calculations, benchmark data or by the methods described in CIBSE TM54 (2013): Evaluating operational energy performance of buildings at the design stage.

Estimating a significant proportion of annual equipment energy use

This methodology is used to estimate which energy uses make up a significant proportion of the equipment energy uses and so detailed calculations are not required. The approach should focus on identifying the larger energy uses that should be included and the small energy uses that can be excluded. As a guide, energy uses making up at least 90% of the estimated total annual energy use should typically be included.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>The following where appropriate:</td>
<td>The following where appropriate: BREEAM-SE Assessor’s site inspection report and photographic evidence.</td>
</tr>
<tr>
<td></td>
<td>- The relevant section or clauses of the building specification or contract.</td>
<td>Manufacturers’ product details.</td>
</tr>
<tr>
<td></td>
<td>- Manufacturers’ product details.</td>
<td>Documentation confirming the installed equipment complies with the relevant scheme or standard outlined in the criteria.</td>
</tr>
<tr>
<td></td>
<td>- Documentation confirming compliance with the relevant scheme or standard outlined in the criteria, e.g. details of compliance with the EU Code of Conduct on Data Centres.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Design drawings or calculations.</td>
<td></td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Data centre

For the purpose of this BREEAM-SE issue, the term ‘data centre’ includes all buildings, facilities and rooms which contain enterprise servers, server communication equipment, cooling equipment and power equipment, and may provide some form of data service (e.g. large-scale mission critical facilities all the way down to small server rooms located in office buildings).

Equipment energy

Building energy use resulting from systems or processes within the building, other than Service energy. This may include energy use from systems integral to the building and its operation, e.g. lifts, escalators, refrigeration systems, ducted fume cupboards; or energy use from operational-related equipment, e.g. servers, printers, computers, mobile fume cupboards, cooking and other appliances.

IT-intensive areas

These include computer areas where more than one computer per 5 m² is provided, e.g. training suites, design studios, libraries’ IT areas and other areas with a high density of computing devices.

Office equipment

Computer monitors, desktop computers, scanners, photocopiers, printers, workstations etc.

White goods and small power equipment

Domestic appliances, for example washing machines, fridges, freezers, fridge-freezers, tumble dryers, washer-dryers, air movement fans or heaters, etc.

Other information

None.
Ene 10 Energy load management

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To recognize and encourage reduction of peak load and the use of flexible demand side response for electricity. Reducing carbon emissions by enabling electricity demand profiles to better match the availability of renewable electricity generation sources.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Peak load reduction

1. The building is fitted with a smart control system that is able to modify the operation to reduce electricity peak loads. Either by reducing the internal peak load or by redistributing the loads.

Exemplary level criteria

The following outlines the exemplary level criteria to achieve one exemplary credit for this BREEAM issue:

One credit – Flexible demand side response

2. The building is fitted with at least one smart appliance or smart control system that is able to modify the operation of the appliance or system in response to external signals from electricity suppliers.
 OR

3. The building incorporates electricity or hot water storage facilities that are able to modify their charging or discharging cycles in response to external signals from electricity suppliers. This storage can be at the building level or across multiple buildings.

Checklists and tables

None.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Single building assessments on larger developments or campuses (and extensions to existing buildings)</td>
<td>Where the building being assessed forms part of a larger development (or is an extension to an existing building) containing common areas and other buildings, the scope of the flexible demand side response criteria applies only to external new and existing elements within the construction zone of the assessed building.</td>
</tr>
</tbody>
</table>

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>The relevant section or clauses of the building specification or contract. Design drawings.</td>
<td>BREEAM Assessor’s site inspection report and photographic evidence or as-built drawings. Manufacturers’ product details.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Construction zone

For the purpose of this issue the construction zone is defined as the site which is being developed for the BREEAM-assessed building and its external site areas, i.e. the scope of the new works.

Energy storage

For the purpose of this issue energy storage is defined as systems that store energy during times where there is little demand for energy or an over production of energy, which can then be used later where there is high demand for energy. To qualify for this issue, these must be equipped to receive signals from energy suppliers to automatically start or stop storing energy.
Examples of energy storage include, but are not limited to:

- Electric vehicle charging points
- Large scale battery storage
- Liquified air storage systems

Smart appliances

For the purpose of this issue smart appliances are defined as appliances that automatically regulate their energy consumption based on the signals they receive from energy suppliers, also known as demand side response. An example of how they can do this is by reducing their energy demand at peak times.

Examples of smart appliances include, but are not limited to:

- Smart cold storage systems (for example, refrigerators or freezers)
- Smart washing machines
- Smart dish washers

Smart control system

For the purpose of this issue a smart control system is defined as a system that automatically regulate the operation of electricity demanding activities in the building to even out peak loads.

Other information

None.
8.0 Transport

Summary

This category encourages better access to sustainable means of transport for building users. Issues in this section focus on the accessibility of public transport and other alternative transport solutions (cyclist facilities, provision of amenities local to a building) that support reductions in car journeys and, therefore, congestion and CO₂ emissions over the life of the building.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tra 01 Public transport accessibility</td>
<td>Up to 5 credits</td>
<td>Recognition of developments in close proximity to good public transport networks, thereby helping to reduce transport-related pollution and congestion.</td>
</tr>
<tr>
<td>Tra 02 Proximity to amenities</td>
<td>Up to 2 credits</td>
<td>Recognition of developments in close proximity of, and accessible to, local amenities which are likely to be frequently required and used by building occupants.</td>
</tr>
<tr>
<td>Tra 03a Alternative modes of transport</td>
<td>Up to 2 credits</td>
<td>Provision of facilities to encourage travel using low carbon modes of transport and to minimise individual journeys.</td>
</tr>
<tr>
<td>Tra 03b Alternative modes of transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tra 04 Maximum car parking capacity</td>
<td>Up to 2 credits</td>
<td>Recognition of developments that limit car parking capacity.</td>
</tr>
<tr>
<td>Tra 05 Travel plan</td>
<td>1</td>
<td>To promote sustainable reductions in transport burdens by undertaking a site specific travel assessment or statement and developing a travel plan based on the needs of the particular site.</td>
</tr>
<tr>
<td>Tra 06 Home office</td>
<td>1</td>
<td>To provide necessary space and services to be able to work from home and reduce the need to commute to work.</td>
</tr>
</tbody>
</table>
Tra 01 Public transport accessibility

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building type dependent</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage development in proximity of good public transport networks, thereby helping to reduce transport-related pollution and congestion.

Assessment criteria

This issue is split into two parts:

- Accessibility Index (up to 5 credits - building type dependent)
- Dedicated bus service (1 credit)

The following is required to demonstrate compliance:

Up to five credits – Accessibility Index

1. The public transport Accessibility Index (AI) for the assessed building is calculated and BREEAM-SE credits awarded in accordance with the building types, AI benchmarks and BREEAM-SE credits in Table 21.

2. The Accessibility Index is determined by entering the following information in to the BREEAM-SE Tra 01 calculator:

 2.a The distance (m) from the main building entrance to each compliant public transport node
 2.b The public transport types serving the compliant node, e.g., bus or rail
 2.c The average number of services stopping per hour at each compliant node during the operating hours of the building for a typical day (see compliance notes and Table 22).

OR

One credit – Dedicated bus service

3. For buildings with a fixed shift pattern, i.e. where building users will predominantly arrive or depart at set times, one credit can be awarded where the tenant or landlord provides, or commits to providing a dedicated bus service to and from the building at the beginning and end of each shift or day.

This credit is only available in cases where a development is unable to achieve any of the available credits using the Accessibility Index criteria (i.e. its location has a low public transport Accessibility Index).

Checklists and tables

Table 21–22.
Table 21: Credits available for each building type relating to the public transport Accessibility Index (AI) score.

<table>
<thead>
<tr>
<th>Accessibility Index</th>
<th>≥ 0.5</th>
<th>≥ 1</th>
<th>≥ 2</th>
<th>≥ 4</th>
<th>≥ 8</th>
<th>≥ 10</th>
<th>≥ 12</th>
<th>≥ 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building type</td>
<td>BREEAM-SE credits available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offices, Industrial, Long term residential institutions, Other building – Staffed</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Preschool, School</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Retail, Higher education – Off campus, Hotels and short term residential institutions, Other building - Visitors</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Higher education – On campus</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Rural location sensitive buildings, Other buildings – Rural</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Residential dwellings</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Campus developments. See criterion 1.</td>
<td>Where 80% or more of the buildings on a campus style development, e.g. further or higher education sites, are within 1000m of the campus’s main entrance, then the campus main entrance can be used as the reference point for the assessment of distance to compliant public transport nodes for this issue. The campus main entrance is that which is accessed by the majority of the assessed building’s staff or students or visitors. A site may have more than one main entrance which between them account for the majority of staff, students and visitors that access the site. In such a case either entrance can be used as the basis for the calculation. Where less than 80% of the buildings on the campus development are within 1000m of the campus main entrance, the assessed building’s main entrance must be used as the reference point for the assessment of distance to compliant public transport nodes for this issue. This rule implies that for large campus developments, when distances are too great to be comfortably covered by walking, the needs of the building users would be served better by locating the public transport nodes inside or on the periphery of the campus. Where the building is not part of a centralised campus then its main entrance must be used as the reference point for the assessment of this issue.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Dedicated bus services. See criterion 3.</td>
<td>The credit for the provision of a dedicated bus service is available for any building type with a fixed shift pattern: examples could include schools, offices, retail, factories etc. The bus must provide transfer to the local population centre, public transport interchange or be a door-to-door service. The credit is provided as an alternative, where the AI of the building is too low to achieve any BREEAM-SE credits, but where the building users will have the option of a dedicated bus service. However, a dedicated bus service can be included in the public transport Accessibility Index calculation as a means of contributing towards achieving credits via this method (regardless of the shift pattern). Where this is the case, the distance from the main building entrance to the drop-off or pick-up point (the transport node) of the service should be used.</td>
</tr>
</tbody>
</table>

Methodology

Calculating the average number of services

For the purpose of the calculation, the frequency of public transport is the average number of services per hour. This is calculated by determining the number of stopping services at the node during the peak arrival or departure times for the building or the building’s typical day’s operating hours (see definition ‘operating hours’), divided by the number of hours within that period. For example: the average number of services for an assessment of a building that operates between 08:00 - 19:00 hrs (11 hours) and is within proximity of a bus stop with 35 stopping services during this period is 3.2 (equivalent to an average service frequency of approximately 20 minutes).

Multiple services

Services that operate from more than one node within proximity of the building, i.e. two separate bus stops served by the same bus, must be considered only once; at the node in closest proximity to the building. Different services at the same node can be considered as separate.

Bidirectional routes

Routes will be bidirectional; however, for the purpose of calculating the index, consider only the direction with the highest frequency.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>As design stage. Where relying on a calculation carried out at the design stage to demonstrate compliance post-construction, if the period between the design and post-construction stage reporting is greater than 12 months, then the AI must be recalculated using up-to-date public transport timetable information. As interim design stage.</td>
</tr>
<tr>
<td></td>
<td>Scale map highlighting the location of the building and all public transport nodes in proximity of the building. Timetables for each service at each public transport node considered. The calculated Accessibility Index for the building. Where appropriate, information about the dedicated bus service. A completed copy of the Tra 01 calculator.</td>
</tr>
<tr>
<td>3</td>
<td>As interim design stage. A formal letter from the tenant or landlord confirming provision of and details for the dedicated bus services.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Accessibility Index

A measure that provides an indicator of the accessibility and density of the public transport network at a point of interest (in the case of BREEAM-SE, a building). The index is influenced by the proximity and diversity of the public transport network and the level or frequency of service at the accessible node. For example, a building that has a single public transport node 500m from its main building entrance with one service stopping every 15 minutes, i.e. four services per hour on average, will score an AI of approximately 1.90. Alternatively, the same node with one service every 15 minutes, but 300m from the building entrance will achieve an AI of 2.26.

The same node with two services stopping every 15 minutes will score an AI of 2.85. The greater the number of compliant nodes, services and their proximity to the building, the higher the AI.

Additional building type classifications

Higher Education (H.E.)

Education that continues beyond Gymnasiet i.e. Högskolor och Universitet.

Higher education – Off campus

H.E buildings located on a campus where less than 25% of students are resident on the campus or within 1km radius from the campus main entrance.

Higher Education – On campus

H.E buildings located on a campus where 25% or more of the students are resident on the campus or within 1km radius from the campus’s main entrance.
Other building – Staffed
A building predominantly occupied by staff or employees with occasional business related visitors.

Other building – Visitors
A building occupied by a number of core staff or employees with a larger number of consistently frequent visitors or users (either resident or non-resident).

Other Building – Rural
Building types specifically required to be located rurally as a result of their function, i.e. a building which would never be located within an urban area, e.g. a national park visitor centre (see definition of rural and rural location sensitive buildings location).

BREEAM-SE Tra 01 calculator tool
A spreadsheet-based calculator used to determine the Accessibility Index for the assessed building and the number of BREEAM-SE credits achieved. The BREEAM-SE Tra 01 calculator tool is available at SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.

Compliant transport node
A compliant node includes any bus service with a stop within 650m and any railway station within 1000m of the assessed building’s main entrance, measured via a safe pedestrian route (not ‘as the crow flies’). For rural locations, bus stops within 1000 m of the assessed building’s main entrance, measured via a safe pedestrian route, are accepted as compliant transport nodes. The service stopping at each node must provide transport from, or onward travel to, either an urban centre, major transport node or a community focal point, e.g. doctor’s surgery, library, school or village centre. Only local services should be assessed and any national public transport services should be excluded from the analysis, unless such a service can be said to provide a local commuter service.

Main building entrance
The main building entrance is the entrance to the assessed building which is directly connected to the main building reception, circulation routes, lifts or stairs and is available to the majority of the building’s staff and visitors on arrival. It is not the site entrance (unless the site entrance is also the building entrance, e.g. building with a boundary on a public highway).

Operating hours
BREEAM-SE seeks to define the building’s accessibility to the public transport network for the period during which the majority of building users will travel to and from the building. In most cases the normal operating hours of the building can be used. Where shift patterns see the majority of building users (over 80%) arriving or leaving during a certain period, for example an office building where the majority of office workers arrive between 8.00-10.00, then that period can be used as an alternative to the operating hours of the building. This accounts for some building types that operate a 24-hour day and on a shift work basis. During what typically would be deemed unsociable hours, and therefore periods where there is little if any public transport operating, such periods are not required to be accounted for in the assessment of this issue. Where the assessed building operates on a 24-hour basis or the operating hours are unknown at the time of assessment,
then refer to and use the table of default operating hours, which can be found in the additional information section of this issue.

Rural location (Urban location)
A rural location is defined in this context as a site clearly not within or on the boundary of a small, medium or large urban cover. An urban cover will have a population of 3000 people or more, located within a tract of continuously built-up urban land extending 20 hectares or more. Therefore, the definition of rural includes village locations, green field sites or small urban centres with a population of less 3000 people. Such locations will most likely be on a local bus route to larger urban areas or other local towns and may have local shops and other facilities.

Rural location sensitive buildings
This definition includes any of the building types (listed below) where there is a demonstrable social or economic need from a rural population for the service or demand, which the new building is intended to meet; and therefore locating the building at an alternative site which could have higher public transport accessibility levels, i.e. within an urbanised area, is unfeasible. The following building types are examples of those that may fall into this category.

1. Offices where providing services to the local community
2. Industrial where providing services to the local community
3. Retail where providing services to the local community
4. Preschool, primary and secondary school where providing services to the local community
5. Residential dwellings where providing accommodation to the local community.

Typical day
The typical day is that which represents the period when travel to and from the building by its users and visitors will be at its highest. For most buildings this should be taken as a midweek day. In choosing a typical day the assessor should check that timetabled information for that day is, within reason, representative of the public transport provision for the entire operating week (excluding Sundays).
Other information

Table 22: Default hours of operation by building type for a typical day

<table>
<thead>
<tr>
<th>Building type</th>
<th>Default hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>08:00–18:00</td>
</tr>
<tr>
<td>Preschool, school</td>
<td>06:30–18:00, 08:00–17:00</td>
</tr>
<tr>
<td>University, Higher Education</td>
<td>08:00–19:00</td>
</tr>
<tr>
<td>Retail: Shopping centre</td>
<td>10:00–20:00</td>
</tr>
<tr>
<td>Retail: Supermarket</td>
<td>08:00–22:00</td>
</tr>
<tr>
<td>Retail: Service provider</td>
<td>08:00–18:00</td>
</tr>
<tr>
<td>Retail: Convenience store</td>
<td>07:00–22:00</td>
</tr>
<tr>
<td>Retail: DIY or retail park</td>
<td>08:00–20:00</td>
</tr>
<tr>
<td>Retail: shop</td>
<td>10:00–18:00</td>
</tr>
<tr>
<td>Residential dwellings and residential institutions</td>
<td>08:00–19:00</td>
</tr>
<tr>
<td>Hotel</td>
<td>08:00–19:00</td>
</tr>
<tr>
<td>24-hour use building</td>
<td>07:00–20:00</td>
</tr>
</tbody>
</table>

Note: These hours are provided as a guideline: differing hours can be used, where justified by the assessor, as a result of regional or national culture, customs or routine.
Tra 02 Proximity to amenities

Aim

To encourage and reward a building location that facilitates easy access to local services and so reduces the environmental, social and economic impacts resulting from multiple or extended building user journeys, including transport-related emissions and traffic congestion.

Assessment criteria

The following is required to demonstrate compliance:

Up to two credits

1. All building types, except Type 6, must be located within the stated proximity of at least two accessible core amenities (‘C’ in Table 23.)
2. The remaining number of amenities required, in Table 23, must be met using any other applicable amenities (including any remaining core amenities).

Checklists and tables

Table 23.

Table 23: Credits available for Tra 02 for different building types.
Compliance notes

Ref	Terms	Description
Shell and core (non-residential and residential institutions only)
CN1 | Applicable assessment criteria | Both options: All criteria relevant to the building type and function apply.

Residential - Partially fitted and fully fitted
CN2 | Applicable assessment criteria – Single and multiple dwellings | Both options: All criteria relevant to the building type and function apply.

General
CN3 | Collective amenities | One type of amenity may also exist within or as part of other types of amenities, e.g. a grocery store in a petrol station, cash point or pharmacy in a supermarket etc. It is not a requirement of this issue that each amenity is ‘standalone’.
CN3.1 | Amenities within the assessed building or on site | An amenity within the building or on the same site as the proposed development, e.g. where the assessed building is part of a campus, retail or business park or centre, complies with the assessment criteria.
CN3.2 | Phased developments | The guidance provided in BREEAM-SE issue Tra 01 Public transport accessibility concerning phased developments also applies to this issue.
CN3.3 | Safe pedestrian route | Safe pedestrian routes include pavements and safe crossing points or, where provided, dedicated pedestrian crossing points, such as pelican or zebra crossings. A safe crossing point could also be a tactile crossing that drops to the level of the road, which could be used by wheelchair users. An element of assessor judgement is required and if in doubt, their justification of safe crossing points should be provided. For more information on safe pedestrian routes, please refer to the guide GCM-handbok, published by Trafikverket and Sveriges Kommuner och Landsting.

Methodology

None.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Marked-up site plan or map highlighting:</td>
<td>Assessor’s building or site inspection and photographic evidence confirming:</td>
</tr>
<tr>
<td></td>
<td>• Location of assessed building</td>
<td>• The existence of the local amenities</td>
</tr>
<tr>
<td></td>
<td>• Location and type of amenities</td>
<td>• The route and distance to the amenities.</td>
</tr>
<tr>
<td></td>
<td>• The route to the amenities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Plan or map scale.</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>Where the amenities do not currently exist, but are due to be developed, a letter from the client or developer confirming:</td>
<td>Evidence as outlined at the design stage of assessment</td>
</tr>
<tr>
<td></td>
<td>• The location and type of amenities to be provided</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>• The timescale for development of the amenities</td>
<td>As above where amenities developed, or under development at the time of post- construction review or assessment.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Accessible amenities

Amenities (as listed) that are within the required proximity (distance in metres) of the building and accessible via safe pedestrian routes. For more information on safe pedestrian routes, see CN3.3. The distance should not be measured in a straight line.

Access to a recreation or leisure facility

A facility that will allow building users to exercise and maintain a healthy lifestyle. This could include a local leisure centre, a gym, football field, or for a school a playground. Note that the facility should be accessible to the general public.

Access to an outdoor open space (public or private, suitably sized and accessible to building users)

A space that enables building users to take an appropriate break from internal building activities, for example, an office building would benefit from a space to sit outside and have lunch. These spaces will need to be suitably sized to ensure that the space supports a reasonable number of building users associated with the project and should not form a part of the public highway.

Appropriate food outlet

A means of accessing a food supply that is affordable to the majority of the building’s users, as well as being appropriate to their day-to-day needs. For example, an office building would benefit from having a lunch restaurant and a residential dwelling from a food shop in the local area.
Child care or school

The intention of this amenity is to provide child support for potential building users; this could include a nursery, child minding facilities or a school local to the development. A school cannot be considered an amenity to a BREEAM-SE assessment of the same school.

Community facility

An internal space that can be used by the building users as a meeting point to socialise in the area. The facility could for example be a community hall, a cafe or a restaurant/bar.

Other information

None.
Tra 03a Alternative modes of transport (non-residential, and residential institutions only)

Number of credits available	Minimum standards
2 | No

Aim

To provide facilities which encourage building users to travel using low carbon modes of transport and to minimise individual journeys.

Assessment criteria

The following is required to demonstrate compliance:

Up to two credits

One of the following options has been implemented:

<table>
<thead>
<tr>
<th>Option</th>
<th>Criteria</th>
<th>Applicable building types</th>
<th>Credits</th>
</tr>
</thead>
</table>
| 1 | 1. During the preparation of the brief the design team has consulted with the local authority on the state of the local cycling network and how the development could contribute to improving it.
2. One proposition has been chosen in agreement with the local authority and implemented. This proposition must be additional to what would have been done by the local authority without the support from the project and must have a significant impact on the local cycling network. | All | 2 |
| 2 | 3. Negotiations with public transport service companies and/or authorities have resulted in an increase of the local service provision in the development’s local area.
4. This increase in public transport service has improved the existing AI by at least 1.00 (see Tra 01 Public transport accessibility). | All | 2 |
| 3 | 5. Electric recharging stations have been provided for at least 5% of the total car parking capacity for the building. | All | 2 |
| 4 | 6. A car sharing/pool system or facility has been set up to facilitate and encourage building users to sign up to a car sharing scheme.
7. Marketing material has been developed to help raise awareness of the system and will be communicated to the tenants where applicable.
8. Priority spaces for car sharers are provided for at least 5% of the total car parking capacity for the building.
9. Priority spaces are located in the nearest available spaces in the nearest available parking area to the main building entrance on site. | All | 2 |
Exemplary level criteria

The following outlines the exemplary level criteria to achieve an exemplary credit for this BREEAM-SE issue.

13. Two of the options above have been fully implemented.

Checklists and tables

Table 24.

Table 24: Cycle storage criteria for each building type.

<table>
<thead>
<tr>
<th>Building</th>
<th>No. spaces per unit of measure</th>
<th>Unit of measure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offices, Industrial</td>
<td>1 (for building staff)</td>
<td>5 staff</td>
<td>Where the number of building users (based upon the unit of measure) exceeds 200, the sliding scale of compliance can be used to identify the appropriate number of cycle spaces required (see Methodology).</td>
</tr>
<tr>
<td>Visitor</td>
<td>1 (for visitors)</td>
<td>50 staff</td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large retail</td>
<td>1</td>
<td>5 staff</td>
<td>A large retail complex is typically an out of town shopping mall or a large super market with specific car parking allocated. The number of staff should be the maximum number using the building at any time or shift. The staff spaces must be provided in addition to customer spaces. While they do not need to be separate from customer spaces, this is encouraged. This is subject to providing a minimum of 10 cycle customer spaces. Any retail development that provides at least 50 customer cycle storage spaces will comply regardless of the number of parking spaces. Note that 1 in 10 visitor spaces should be allocated for cargo bikes and bike trailers.</td>
</tr>
<tr>
<td>Small retail</td>
<td>10</td>
<td>Total</td>
<td>Small retail is a smaller single shop with direct street entrance. The spaces must be publicly accessible within the proximity of a main building entrance. Compliant cyclist facilities are intended for staff only, i.e. it is not a requirement of compliance to provide facilities for customers.</td>
</tr>
<tr>
<td>Building</td>
<td>No. spaces per unit of measure</td>
<td>Unit of measure</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Other retail</td>
<td>See Notes</td>
<td>See Notes</td>
<td>For retail complex that are larger/more extensive than the definition of small retail but smaller than the definition of large retail, “Other building – for visitors” can be used as the definition for these premises. However, if car parks are built, then the definition of large retail must be applied. In cases where the retail complex consists of several separate small retail stores, the project can also choose to assess each retail separately based on the definition of “Small retail”. In that case, the requirements must be met for each retail store. It must be clearly reported and justified which definition has been chosen and that the assessor has assessed its viability and relevance.</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preschool</td>
<td>1</td>
<td>5 staff</td>
<td>Where the number of building users (based upon the unit of measure) exceeds 200, the sliding scale of compliance can be used to identify the appropriate number of cycle spaces required (see Methodology).</td>
</tr>
<tr>
<td>Grundskola</td>
<td>5</td>
<td>Per class</td>
<td>Five cycle parking spaces per class i.e. if 10 classes in a school, then 50 spaces have to be provided.</td>
</tr>
<tr>
<td>Gymnasium, högskola och universitet</td>
<td>1</td>
<td>5 staff and pupils or students total</td>
<td>Student numbers must account for both under- and post- graduates, as well as PhD students and post-doctorates. Where the number of building users (based upon the unit of measure) exceeds 200, the sliding scale of compliance can be used to identify the appropriate number of cycle spaces required (see Methodology).</td>
</tr>
<tr>
<td>Residential institutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student residences</td>
<td>1</td>
<td>10 staff</td>
<td>The requirement is subject to a minimum of one compliant space being provided.</td>
</tr>
<tr>
<td>1</td>
<td>2 residents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheltered housing, care homes, supported living facility*</td>
<td>1</td>
<td>10 staff</td>
<td>* Or spaces specified in accordance with the number required as identified by the likely resident profile. Where the resident profile is not the elderly or physically disabled or impaired then, where appropriate, the requirement for wheelchair or electric buggy spaces should be changed to compliant cycle spaces or spaces for three wheel bicycles.</td>
</tr>
<tr>
<td>1 compliant wheelchair or electric buggy storage space</td>
<td>10 residents*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other buildings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other building - Staffed*</td>
<td>Use the criteria defined for office buildings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other building - Visitors*</td>
<td>1</td>
<td>10 staff</td>
<td>Where the number of building users (based upon the unit of measure) exceeds 200, the sliding scale of compliance can be used to identify the appropriate number of cycle spaces required (see Methodology).</td>
</tr>
<tr>
<td>1</td>
<td>10 visitors or beds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other buildings - Rural*</td>
<td>1</td>
<td>20 staff</td>
<td>It is possible to obtain one credit if appropriate number of bicycle spaces and required facilities only for staff are met. For this credit, the requirement for bicycle space for visitors does not need to be fulfilled. Where the number of building users (based upon the unit of measure) exceeds 200, the sliding scale of compliance can be used to identify the appropriate number of cycle spaces required (see Methodology).</td>
</tr>
<tr>
<td>1</td>
<td>20 building visitors or beds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*See relevant definitions in the BREEAM-SE issue Tra 01 Public transport accessibility for classification of other buildings - Staffed, Visitors and Rural.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: This issue is not applicable to residential dwellings.</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Number of building occupants unknown</td>
<td>If it is not possible to confirm the number of building occupants commuting to the development, possibly due to the speculative nature of the building, then the default occupancy rates given in the table in the Additional information section of BREEAM-SE issue Tra 04 Maximum car parking capacity can be used to help determine a default number of users. Alternatively, the number of building occupants in an existing development of similar type and size can be used (the assessor needs to justify or validate the number used in their certification report).</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Building users</td>
<td>Where the term ‘building users’ is referenced, this refers to the staff who will work within the building.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Building types</td>
<td>Please see BREEAM-SE issue Tra 01 Public transport accessibility to determine the building type. If assessing a bespoke building, please see the bespoke criteria appendix for confirmation.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>More onerous requirements</td>
<td>Where local authorities require more onerous requirements than BREEAM-SE (i.e. number of electric recharging stations or cycle spaces), these must be met in order to award the credits.</td>
</tr>
<tr>
<td>CN3.4</td>
<td>Existing compliant facilities and extensions to existing buildings</td>
<td>For assessments of new buildings on an existing site, where there are existing compliant facilities, such facilities can be assessed against the requirements of this issue. The number of existing compliant facilities must be large enough to cater for the building users of the assessed building, in addition to the users from any existing buildings.</td>
</tr>
<tr>
<td>CN3.5</td>
<td>Shared compliant facilities</td>
<td>For assessments of new buildings that are constructed parallelly and have compliant shared facilities, such facilities can be assessed against the requirements of this issue. The number of shared compliant facilities must be large enough to cater the building users of all buildings.</td>
</tr>
<tr>
<td>CN3.6</td>
<td>Building locations with a high level of public transport accessibility</td>
<td>For sites where at least 50% of the available credits for BREEAM-SE issue Tra 01 Public transport accessibility have been awarded (rounded to the nearest whole credit), the number of compliant cycle spaces can be reduced by 25% in all buildings except in rural locations. This reduction will also reduce the requirement for compliant shower or lockers by the same margin.</td>
</tr>
</tbody>
</table>
Bicycle sharing systems are increasingly popular and diverse systems that have appeared over the past few years in major cities whereby a number of bicycles are made available for shared use among people who do not own a bicycle. The central concept of many of the systems is free or affordable access to bicycles for city transport in order to reduce the use of automobiles for short trips inside the city thereby diminishing traffic congestion, noise and air pollution.

Up to 25% of the BREEAM-SE cycle spaces requirement may be provided by a public bicycle sharing system where it complies with the following:

1. The programme is implemented by the municipality or through a public-private partnership
2. The system must be open to casual users who wish to use them for one-way rides to work, education or shopping centres
3. Bicycles are available at unattended urban locations; and they operate in a manner that could be seen as 'bicycle transit'
4. Service terminals must be available throughout the city
5. The average distance between service terminals is 500m maximum in inner city areas
6. A service terminal is available within 500m of the main building entrance
7. The bicycle terminals do not need to comply with the design requirements listed in the definition of Compliant cycle storage.

The number of compliant facilities is calculated based on the total number of cycle spaces required. For retail projects, public bicycle spaces can also count towards the number of customer cycle spaces required.

Where more than the minimum number of compliant cycle spaces is provided, it is not necessary to also provide more than the minimum number of showers or lockers or changing facilities.

The placement of shower must not hinder the usage of other necessary facilities while complying with facilities requirement for cyclists. When a shower is placed in the same room with WC, it is considered as non-compliant unless it can be unequivocally reported that the WC is provided in addition to the requirements set in the relevant standards and regulations for accessibility.

Where the term 'building visitors' is used this does not include guests staying at the hotel. However, it would include visitors to the conference facilities or restaurant or gym, etc. who are not staying in the hotel (where present).

Methodology

Sliding scale of compliance

To recognise the increased confidence in availability that occurs where there is larger scale provision of facilities, it is acceptable to reduce the provision requirement for building users by increasing the standard unit of measure (defined in Table 24).

1. For buildings with more than 200 users but less than 300, the unit of measure can be increased by a ratio of 1.5.
2. For buildings with more than 300 users but less than 400, the unit of measure can be increased by a ratio of 2.
3. For buildings with more than 400 users, the unit of measure can be increased by a ratio of 2.5.
The calculation starts from the first 200 building users, with no ratio, and keeps going considering the ratio only for the remaining building users.

For example, an office building with 800 staff would be required to provide the following number of cycle storage spaces:

1–200 staff @ 1 space per 5 staff = 40 spaces PLUS
201–300 staff @ 1 space per 7.5 staff (standard unit of measure x 1.5) = 13.3 spaces PLUS
301–400 staff @ 1 space per 10 staff (standard unit of measure x 2) = 10 spaces PLUS
401+ staff @ 1 space per 12.5 staff (standard unit of measure x 2.5) = 32 spaces

Total compliant cycle storage för 800 staff = 40 + 13.3 + 10 + 32 = 95.3 spaces = 96 spaces

Total compliant cycle storage för visitors (1 visitor for 50 staff) = 800/50 = 16 spaces

Total compliant cycle storage (staff + visitors) = 96 + 16 = 112 spaces

Note that an uneven number of cycle storage spaces must always be rounded up. The number is rounded when calculating the total and not when calculating the subtotals.

Minimum cycle storage provision

Where the calculated number of required cycle storage spaces is less than four, total provision should be based on the lower of the following:

1. A minimum of four compliant storage spaces must be provided OR
2. One space per user (staff and where appropriate other user groups).

Provision of cycle storage and facilities on site with multiple buildings

Where a new or infill building is constructed on an existing site, or multiple new buildings are to be constructed on the same site, compliance with this issue may be assessed based on the standalone building or on a site-wide basis. How this is determined depends on the configuration of the proposed cycle storage, cycle facilities and the interpretation and justification of the assessor.

Standalone approach

Where cycle storage and associated facilities are being provided for the assessed building only, the following applies:

Cyclist storage:

The number of cycle storage spaces is compliant based on the number of users in the assessed building. All storage spaces provided must be BREEAM-SE compliant and these must be located within, or in close proximity to the assessed building. It is clear from access arrangements, demarcation and positioning that the cycle storage provided is clearly associated with the assessed building only.
The sliding scale of compliance can be applied when determining the number of storage spaces required.

Cyclist facilities:
All new and existing facilities may be included provided they are BREEAM-SE compliant.
Facilities should be located within the assessed building, or in an accessible adjacent building and for the sole use of the assessed building’s users.

Site-wide approach
Where cycle storage and associated facilities are provided and these would be accessible to all users of the entire site, or where there is a distinct group of local buildings within a site that would share facilities, the following applies:

Cyclist storage:
The number of cycle storage spaces is compliant based on the number of users on site or within a group of local buildings. All new storage spaces must be BREEAM-SE compliant. Existing storage spaces may also be counted, provided they allow bikes to be easily stored and removed with the ability to be locked securely to a compliant cycle space (see point 2 of compliant cycle storage, in the Relevant definitions).

The sliding scale of compliance can be applied when determining the number of storage spaces required.

Cyclist facilities:
The number of cyclist facilities is compliant based on the number of users on site who would be able to use these facilities.

Cyclist facilities may be located anywhere on site. However, the total route that cyclists must take to access the nearest cycle storage, cyclist facilities and building entrances must be no greater than 200m via a safe and convenient route, as measured from the first to the last point on the route. Where possible, different types of cyclist facilities should be grouped together in designated areas for ease of access and use.

All new and existing facilities may be included provided they are BREEAM-SE compliant and conform to the 200m requirement above.

Combination of the two approaches
A mixture of the two approaches can be applied where cycle storage is delivered as a site-wide approach and facilities are being met for the assessed building only. However, a mixed approach cannot be applied where facilities are delivered as a site-wide approach and storage spaces are being met for the assessed building only.
Evidence

<table>
<thead>
<tr>
<th>Ref</th>
<th>Design stage</th>
<th>Post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Design drawings or relevant sections or clauses of the building specification or contract.</td>
<td>As design stage evidence.</td>
</tr>
<tr>
<td></td>
<td>Plus the following where relevant to the options selected:</td>
<td>Assessor’s building or site inspection and photographic evidence confirming the installation of the compliant facilities.</td>
</tr>
<tr>
<td></td>
<td>Assumptions and calculations used to determine the number of public users.</td>
<td>Plus timetables where relevant to the options selected.</td>
</tr>
<tr>
<td></td>
<td>Consultation documentation. Responses or actions to consultation feedback.</td>
<td>Where changes have occurred since the design stage that could affect compliance, full details of the changes are required to demonstrate compliance.</td>
</tr>
<tr>
<td></td>
<td>Marketing material.</td>
<td></td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Additional building type classifications

See the BREEAM-SE issue Tra 01 Public transport accessibility.

Compliant changing facilities

Compliant changing facilities are defined as those that meet the following:

1. Appropriately sized for the likely or required number of users. The assessor should use their judgment to determine whether the changing area is appropriately sized given the number of cycle storage spaces or showers provided.
2. Changing areas must include adequate space and facilities to hang or store clothing and equipment while changing or showering, e.g. bench seat or hooks.
3. Toilet or shower cubicles cannot be counted as changing facilities.

Compliant cycle storage

Compliant cycle storage facilities are those that meet the following:

1. Cycles can be secured within spaces, with fixings for one or more cycles. The fixings should allow both the wheel and frame to be locked securely. Spaces (excluding spaces for visitors and students) are covered overhead and the cycle spaces are set in or fixed to a permanent structure (building or hardstanding). Alternatively the cycle storage may be located in a locked room / structure accessible for tenants only with code lock or similar.
2. The distance between each cycle space, and cycle space and other obstructions, e.g. a wall, allows for appropriate access to the cycle storage space to enable bikes to be easily stored and accessed.
3. The storage facility or entrance to the facility is in a prominent site location within easy reach. If the storage facility is not viewable from the building, or from the building’s main entrance, a sign to advertise the presence of and direction to the storage must be put up. It should be easy and safe for the tenant to access the storage space and there should be no stairs or steep narrow ramps*. If there are doors to enter the space these should open automatically or by
pressing a button. * Ramps normally used to access garages are allowed but they must be large enough to allow for both cyclists and cars and there must not be any obstructed views which will make the cyclist invisible for the motorist and vice versa.

4. The cycle storage facility has adequate lighting; this could be demonstrated with the lighting criteria defined in BREEAM-SE issue Hea 01 Visual comfort. The lighting must be controlled to avoid out-of-hours use and operation during daylight hours, where there is sufficient daylight in or around the facility.

5. For staff bicycle parking facilities greater than 40 spaces a bicycle pump and wheel repair kit should be provided.

See also the GCM Handbok published by Trafikverket and Sveriges Kommuner och Landsting for assistance when designing cycle parking.

Compliant drying spaces

A compliant drying space is defined as a space that is specifically designed and designated with adequate heating or ventilation for the drying of wet clothes. A plant room, for example, is not a compliant drying space. There should be hooks for hanging up your outdoor clothes adjacent to the drying space.

Compliant lockers

Compliant lockers are defined as those that meet the following:

1. The number of lockers is at least one locker for every 10 cycle spaces
2. Lockers are either in, or adjacent to, compliant changing rooms, where provided
3. The lockers are sized appropriately for the storage of a cyclist’s equipment.

Compliant showers

Compliant showers are defined as those that meet the following:

1. Provision of one shower for every 20 cycle storage spaces, subject to a minimum provision of one shower
2. Any building providing eight showers or more will comply regardless of the number of cycle storage spaces provided
3. Both male and female users must be catered for, i.e. either separate showers within shared gender-specific facilities (required provision split 50-50) or single shower cubicles and changing space for mixed use
4. The showers do not need to be dedicated to cyclists and can be those shared with other users or uses.

Other information

None.
Tra 03b Alternative modes of transport (residential only)

Number of credits available	Minimum standards
2 | No

Aim

To provide facilities which encourage building users to travel using low carbon modes of transport and to minimise individual journeys.

Assessment criteria

The following is required to demonstrate compliance:

Up to two credits

One of the following options has been implemented:

<table>
<thead>
<tr>
<th>Option</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. During the preparation of the brief, the design team has consulted with the local authority on the provision or condition of the local cycling network and how the development could contribute to improving it.
2. One proposition has been chosen in agreement with the local authority and implemented. This proposition must be additional to what would have been done by the local authority without the support from the project and must have a significant impact on the local cycling network.</td>
</tr>
<tr>
<td>2</td>
<td>3. Negotiations with public transport service companies and/or authorities have resulted in an increase of the local service provision in the development’s local area.
4. This improvement in public transport provision has increased the pre-development AI by at least 1.00 (see Tra 01 Public transport accessibility).</td>
</tr>
<tr>
<td>3</td>
<td>5. Electric vehicle charging stations have been provided for the dwelling occupants. Table 26 illustrates how credits are achieved.</td>
</tr>
<tr>
<td>4</td>
<td>6. A communal ‘car club’ is created where the members share the use of a locally based fleet of vehicles.</td>
</tr>
<tr>
<td>5</td>
<td>7. Cycles are stored in a compliant individual or communal cycle storage space. This has to be safe, secure, convenient, weather-proof and with easy and direct access.
8. Table 25 illustrates how credits are achieved.</td>
</tr>
</tbody>
</table>
Exemplary level criteria

The following outlines the exemplary level criteria to achieve an exemplary credit for this BREEAM-SE issue.

9. Two of the options above have been fully implemented.

Checklists and tables

Table 25–26.

Table 25: Number of cycle spaces per dwelling and number of credits available.

<table>
<thead>
<tr>
<th>Size of dwelling</th>
<th>1 cycle space for every 2 dwellings</th>
<th>1 cycle space per dwelling</th>
<th>2 cycle spaces per dwelling</th>
<th>3 cycle spaces per dwelling</th>
<th>Credits available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:a or 2:a</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3:a or 4:a</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5:a or larger</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 26: Electric vehicle charging stations as a percentage of total car parking spaces

<table>
<thead>
<tr>
<th>Percentages</th>
<th>Credits available</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>1</td>
</tr>
<tr>
<td>40%</td>
<td>2</td>
</tr>
</tbody>
</table>

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable to non-residential and residential institutions.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Existing compliant facilities and extensions to existing buildings</td>
<td>Please refer to issue Tra 03a Alternative modes of transport.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Building types</td>
<td>Please refer to issue Tra 03a Alternative modes of transport.</td>
</tr>
<tr>
<td>Ref</td>
<td>Terms</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Access to the cycle store</td>
<td>Access from the cycle store to the public right of way must not be through the residence, i.e. where cycles are stored in a shed in the back garden of a mid-terraced home and there is no back garden gate, this is non-compliant. In blocks of flats and multi-dwellings with communal areas, communal cycle stores have to be located within 100m from the front door or the main entrance. If for strategic reasons (outside the control of the developer) the store cannot be located within the required distance, exceptions to the rule may be allowed. Full details must be provided and SGBC consulted prior to awarding credits.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Storage space within the dwelling</td>
<td>Where cycles are to be stored inside the dwelling, the credit cannot be achieved (unless within a porch of adequate space as defined in minimum space requirements).</td>
</tr>
<tr>
<td>CN3.4</td>
<td>Folding cycles</td>
<td>The provision of space for folding cycles stored within the dwelling would not achieve the credit. Folding cycles would be a temporary provision whereas the provision of cycle storage is a permanent feature.</td>
</tr>
</tbody>
</table>

Methodology

Minimum cycle storage provision

Where the calculated number of required cycle storage spaces is less than four, total provision should be based on the lower of the following:

1. A minimum of four compliant storage spaces must be provided
 OR
2. One space per user

Provision of cycle storage on site with multiple buildings

Where a new or infill building is constructed on an existing site, or multiple new buildings are to be constructed on the same site, compliance with this issue may be assessed based on the standalone building or on a site-wide basis. How this is determined depends on the configuration of the proposed cycle storage and the interpretation and justification of the assessor.

Standalone approach

Where cycle storage is being provided for the assessed building only, the number of cycle storage spaces is compliant based on the number of users in the assessed building. All storage spaces provided must be BREEAM-SE compliant and these must be located within, or in close proximity to, the assessed building. It is clear from access arrangements, demarcation and positioning that the cycle storage provided is clearly associated with the assessed building only.

Site-wide approach

Where cycle storage is provided and this would be accessible to all users of the entire site, or where there is a distinct group of local buildings within a site that would share the cycle storage, the following applies:
Cyclist storage

- The number of cycle storage spaces is compliant based on the number of users on site or within a group of local buildings.
- All new storage spaces must be BREEAM-SE compliant. Existing storage spaces may also be counted, provided they allow bikes to be easily stored and removed with the ability to be locked securely to a compliant cycle space (see point 2 of compliant cycle storage, in the Relevant definition).

Evidence

<table>
<thead>
<tr>
<th>Ref</th>
<th>Design stage</th>
<th>Post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Design drawings and relevant sections or clauses of the building specification or contract. Plus the following where relevant to the options selected: • Assumptions and calculations used to determine the number of public users • Consultation documentation • Responses and actions to consultation feedback • Marketing material</td>
<td>As design stage evidence. Assessor’s building and site inspection and photographic evidence confirming the installation of the compliant facilities. Plus timetables where relevant to the options selected. Where changes have occurred since the design stage that could affect compliance, full details of the changes are required to demonstrate compliance.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Compliant cycle storage spaces

Compliant cycle storage facilities are those that meet the following:

1. A minimum of 1 in 20 cycle storage spaces must be provided for three-wheel bicycles, bicycle cargo bikes or bicycle trailers.
2. Cycles can be secured within spaces, with fixings for one or more cycles. The fixings should allow both the wheel and frame to be locked securely. Spaces are covered overhead and the cycle spaces are set in or fixed to a permanent structure (building or hardstanding). Alternatively, the cycle storage may be located in a locked room/structure accessible for tenants only with code lock or similar.
3. The distance between each cycle space, and cycle space and other obstructions, e.g., a wall, allows for appropriate access to the cycle storage space to enable bikes to be easily stored and accessed.
4. The storage facility or entrance to the facility is in a prominent site location within easy reach. If the storage facility is not viewable from the building, or from the building’s main entrance, a sign to advertise the presence of and direction to the storage must be put up. It should be easy and safe for the tenant to access the storage space and there should be no stairs or steep narrow ramps*. If there are doors to enter the space these should open automatically or by pressing a button.

* will be replaced once the decision whether to keep or remove the * is made.
* Ramps normally used to access garages are allowed but they must be large enough to allow for both cyclists and cars and there must not be any obstructed views which will make the cyclist invisible for the motorist and vice versa.

5. The cycle storage facility has adequate lighting; this could be demonstrated with the lighting criteria defined in BREEAM-SE issue Hea 01 Visual comfort. The lighting must be controlled to avoid out-of-hours use and operation during daylight hours, where there is sufficient daylight in or around the facility.

Other information
None.
Tra 04 Maximum car parking capacity
(non-residential and residential institutions only)

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To encourage the use of alternative means of transport other than the private car to and from the building, thereby helping to reduce transport-related emissions and traffic congestion associated with the building’s operation.

Assessment criteria

The following is required to demonstrate compliance:

Up to two credits

1. The building’s car parking capacity is compared to the maximum car parking capacity benchmarks in Table 27 and the relevant number of credits awarded.

For most building types, except those where stated, the benchmarks vary according to the building’s public transport Accessibility Index (AI; determined in accordance with BREEAM-SE issue Tra 01 Public transport accessibility). Therefore, for these building types the AI must be determined prior to assessing this issue. This is required to ensure that the building’s car parking capacity is relative to the development’s accessibility to the public transport network.

Checklists and tables

Table 27 – 28.

Table 27: Credits available in Tra 04 Maximum car parking capacity for different building types.

<table>
<thead>
<tr>
<th>Building’s Accessibility Index</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building type</td>
<td>< 4</td>
</tr>
<tr>
<td>Office, industrial, student residences</td>
<td>3</td>
</tr>
<tr>
<td>Sheltered accommodation, care homes and supported living facility</td>
<td>4</td>
</tr>
<tr>
<td>University and higher education</td>
<td>5</td>
</tr>
<tr>
<td>Retail and other buildings – Staffed and Visitors</td>
<td>15</td>
</tr>
<tr>
<td>Preschool, schools</td>
<td>20</td>
</tr>
<tr>
<td>Other building – Rural</td>
<td>3</td>
</tr>
<tr>
<td>Rural location sensitive buildings</td>
<td>4</td>
</tr>
</tbody>
</table>

Issue not assessed for these building types.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All assessment criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: This issue is not applicable.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Exclusions</td>
<td>Parking spaces set aside for the following building users can be excluded provided these spaces are dedicated for that use, i.e. sized accordingly with the appropriate signage or markings: 1. Disabled 2. Parent and baby 3. Motorbike 4. Car share. In the case of excluding car share spaces, the future building occupier will need to confirm they have an enforceable car share policy.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Parking shared with other buildings</td>
<td>Where the assessed building forms part of a wider site, campus, business park, hospital, and parking is not designated to individual buildings, then the assessor has two options: 1. Assess compliance on the basis of parking capacity for the whole development, accounting for all existing and new users and parking spaces 2. Assess compliance using a pro-rata of parking capacity to building users, e.g. if the assessed building is occupied by 20% of the development’s total occupants, then attribute 20% of the total parking spaces to the assessed building for the purpose of the assessment.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Local authority car parking requirements</td>
<td>Where the local authority sets car parking requirements that are different from the BREEAM-SE criteria, the local authority requirements will need to be met but credits will only be given for achieving the BREEAM-SE criteria, i.e. if the local authority requires a minimum capacity that is higher than the maximum limit set by BREEAM-SE no credits can be awarded.</td>
</tr>
</tbody>
</table>

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>A site plan or copy of the specification confirming: • Number and type of parking spaces provided for the building. Relevant documentation or correspondence from the design team or client confirming the number of building users. Confirmation of the building’s AI (as per Tra 01 Public transport accessibility).</td>
<td>As design stage. Assessor’s building or site inspection and photographic evidence.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Accessibility Index
Please refer to the definition in Tra 01.

Building users
Where the term building users is referenced in this BREEAM-SE issue it refers to the following, where relevant to the building type:

1. Staff (who will work within the building)
2. Students (who will access the building for work or study during a typical academic term time or semester day)
3. Residents in residential institutions (who will reside permanently or for a short period of time in the building).

If known, or can be reasonably estimated, project specific occupancy figures should be used. If this is not possible, for example where the building is a speculative project, use the default occupancy rates given in Table 28 in the Other information section (below) to determine the number of users. Where the number of building users is variable, provision of parking spaces should be based on the maximum number of building users likely to be using the building at any time during a typical day.

Care homes
For the purpose of BREEAM-SE, care homes are defined as buildings with residential accommodation and meals, and have residents that require a level of personal care such as eating, cleaning and a level of medical care.

Other building types
See the BREEAM-SE issue Tra 01 Public transport accessibility for a definition of Other building Staffed, Visitors and Rural.

Rural location sensitive buildings
See the BREEAM-SE issue Tra 01 Public transport accessibility for a definition of Rural location sensitive buildings.

Sheltered housing
Sheltered housing can be defined as self-contained accommodation, usually with an emergency alarm system, communal facilities and a resident warden.
Other information

Table 28: Default occupancy rates by building type.

<table>
<thead>
<tr>
<th>Building type and function area</th>
<th>Occupant density (person/m²)</th>
<th>Building type and function area</th>
<th>Occupant density (person/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td></td>
<td>University and higher education</td>
<td></td>
</tr>
<tr>
<td>Office area (including reception areas)</td>
<td>0.05</td>
<td>Resident’s bedroom</td>
<td>0.120</td>
</tr>
<tr>
<td>Food preparation area (staffed)</td>
<td>0.108</td>
<td>Classroom</td>
<td>0.203</td>
</tr>
<tr>
<td>Small workshop or category laboratory space</td>
<td>0.068</td>
<td>Food preparation area</td>
<td>0.096</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td>Hall, lecture theatre, assembly area</td>
<td>0.202</td>
</tr>
<tr>
<td>Food preparation area</td>
<td>0.213</td>
<td>Computer laboratory</td>
<td>0.231</td>
</tr>
<tr>
<td>Industrial process area</td>
<td>0.022</td>
<td>Laboratory</td>
<td>0.106</td>
</tr>
<tr>
<td>Laboratory</td>
<td>0.107</td>
<td>Laundry</td>
<td>0.105</td>
</tr>
<tr>
<td>Reception</td>
<td>0.110</td>
<td>Reception</td>
<td>0.112</td>
</tr>
<tr>
<td>Warehouse storage</td>
<td>0.009</td>
<td>Workshop (small- scale)</td>
<td>0.068</td>
</tr>
<tr>
<td>Generic office area</td>
<td>0.108</td>
<td>Office and consulting areas</td>
<td>0.098</td>
</tr>
<tr>
<td>Care homes</td>
<td></td>
<td>Hotels and other short stay accommodation</td>
<td></td>
</tr>
<tr>
<td>Reception</td>
<td>0.152</td>
<td>Bedroom</td>
<td>0.094</td>
</tr>
<tr>
<td>Food preparation area</td>
<td>0.161</td>
<td>Food preparation area</td>
<td>0.108</td>
</tr>
<tr>
<td>Physiotherapy studio</td>
<td>0.200</td>
<td>Reception</td>
<td>0.105</td>
</tr>
<tr>
<td>Bedroom unit</td>
<td>0.105</td>
<td>Generic office area</td>
<td>0.106</td>
</tr>
<tr>
<td>Laundry</td>
<td>0.117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly areas and halls</td>
<td>1.000</td>
<td>Data centre or server room</td>
<td>0.096</td>
</tr>
<tr>
<td>Hydrotherapy pool hall</td>
<td>0.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office and consulting areas</td>
<td>0.195</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes for Table 28 of default occupancy rates:

1. The net floor area for each function must be multiplied by the equivalent occupant density to determine an overall occupancy for the function area.
2. Not all potential building areas are listed, only those required to reflect estimated building occupancy for the building type. For example, an office building may have a canteen but it will be the staff that predominantly uses the canteen. The office staff numbers will be estimated using the default occupancy rate for the office area; therefore to include the canteen would result in double counting of occupancy.
3. If a building type is not listed, occupancy rates for a similar building type or function area may be used.
4. The above occupancy rates have been sourced from the activity database of the UK Simplified Building Energy Model (SBEM) and Sveby Brukdata kontor v1.1 2013-06-05.
Tra 05 Travel plan
(non-residential, residential institutions, and multiple dwellings only)

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To recognise the consideration given to accommodating a range of travel options for building users, thereby encouraging the reduction of reliance on forms of travel that have the highest environmental impact.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. A travel plan has been developed as part of the feasibility and design stages.
2. A site-specific travel assessment or statement has been undertaken to ensure the travel plan is structured to meet the needs of the particular site and covers the following (as a minimum):
 2.a Where relevant, existing travel patterns and opinions of existing building or site users towards cycling and walking so that constraints and opportunities can be identified
 2.b Travel patterns and transport impact of future building users
 2.c Current local environment for walkers and cyclists (accounting for visitors who may be accompanied by young children)
 2.d Disabled access (accounting for varying levels of disability and visual impairment)
 2.e Public transport links serving the site
 2.f Current facilities for cyclists
3. The travel plan includes a package of measures to encourage the use of sustainable modes of transport and movement of people and goods during the building’s operation and use.
4. If the occupier is known, they must be involved in the development of the travel plan and they must confirm that the travel plan will be implemented post-construction and be supported by the building’s management in operation.

Checklists and tables

None.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All assessment criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single dwellings</td>
<td>Both options: This issue is not applicable.</td>
</tr>
<tr>
<td>CN2.1</td>
<td>Applicable assessment criteria – Multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Existing travel plan. See criterion 3.</td>
<td>The credit can be awarded if the assessed building is part of a site that has an existing up-to-date organisational travel plan that is compliant with BREEAM-SE, is applicable to all building users (in existing and assessed new buildings) and accounts for the additional travel resulting from users of the new building.</td>
</tr>
</tbody>
</table>
| CN3.1 | Travel plan measures. See criterion 3 | The following measures could be considered as part of the travel plan for development:
 • Providing parking priority spaces for car sharers
 • Providing dedicated and convenient cycle storage and changing facilities
 • Lighting, landscaping and shelter to make pedestrian and public transport waiting areas pleasant
 • Negotiating improved bus services, i.e. altering bus routes or offering discounts
 • Restricting or charging for car parking
 • Criteria for lobby areas where information about public transport or car sharing can be made available
 • Pedestrian and cycle friendly (for all types of user regardless of the level of mobility or visual impairment) by the provision of cycle lanes, safe crossing points, direct routes, appropriate tactile surfaces, well-lit and signposted to other amenities, public transport nodes and adjoining off-site pedestrian and cycle routes
 • Providing suitable taxi drop-off or waiting areas
 • Ensuring that rural buildings are located with appropriate transport access to ensure that they adequately serve the local community (where procured to do so, e.g. community centre)
 • Providing disabled drop-off
 • Providing a travel information point
 • Access to buy tickets |
| CN3.2 | Where the end user or occupier is not known | A travel plan is still required, even if the end user or occupier is not known, albeit that it may only be an interim travel plan or one that broadly addresses all the issues covered in the assessment criteria. The developer must confirm that they will hand over a copy of the travel plan to the building’s future tenants or owner or occupiers, so that it may inform their own travel plan or strategy. |

Methodology

None.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–4</td>
<td>A copy of the travel plan. A copy of the site-specific transport survey or assessment.</td>
<td>As design stage.</td>
</tr>
<tr>
<td>3</td>
<td>A marked-up copy of the site plan demonstrating examples of design measures, implemented in support of the travel plan’s findings</td>
<td>Assessor’s building or site inspection and photographic evidence confirming the installation of measures that support the travel plan.</td>
</tr>
<tr>
<td>4</td>
<td>A letter of confirmation from either the building’s occupier, or in the case of a speculative development, the developer.</td>
<td>As design stage.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Building users
Where the term ‘building users’ is used, this refers to the following, as appropriate to building type:

1. Staff (commuter journeys and business travel)
2. Pupils and students
3. Visitors
4. Customers
5. Community users
6. People who make deliveries or collections to and from the development
7. Contractors and service providers, who regularly work at and access the building or development
8. Residents of residential dwellings and residential institutions.

Travel plan
A travel plan is a strategy for managing all travel and transport within an organisation, principally to increase choice and reduce reliance on the car by seeking to improve access to a site or development by sustainable modes of transport. A travel plan contains both physical and behavioural measures to increase travel choices and reduce reliance on single occupancy car travel.

Other information
Guidance on how to produce a travel plan can be found at the following locations:

1. The Essential Guide to Travel Planning
2. TfL Travel Planning Guidance

While these documents have been written for UK property development, the principles can be applied internationally.

Information about mobility management plans can be found on www.EPOMM.eu.
Tra 06 Home office
(residential only)

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To reduce the need to commute to work by providing residents with the necessary space and services to be able to work from home.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. A home office has been provided within each dwelling with adequate space and services, as follows:
 1.a For dwellings with one or two bedrooms or studio homes, space is provided in the living room, one of the bedrooms or any other suitable area in the home such as a large hall or dining area
 1.b For dwellings with three or more bedrooms, sufficient working space is provided within a room other than the kitchen, living room or master bedroom or bathroom
 1.c In all cases, the room is large enough not to prevent the intended use of that room, i.e. a home office set up in the main bedroom does not compromise the ability for a double bed and other necessary furnishing to be contained within that room.

2. Sufficient services must include as a minimum:
 2.a Two double power sockets
 2.b Connection to a cable or broadband service available at the address.
 2.c Adequate daylight, the room chosen to be the nominated home office must have a compliant average daylight factor, see Hea 01 Visual comfort: Table 11
 2.d Adequate ventilation, either through an openable window or alternative ventilation such as passive stack, mechanical ventilation, etc. Rooms intended to be used as a home office must meet the requirements in Hea 02 Indoor air quality: criterion 4.

Checklists and tables

None.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable to non-residential and residential institutions.</td>
</tr>
</tbody>
</table>

Residential – Partially fitted and fully fitted

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Partially fitted: This issue is not applicable. Fully fitted: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3</td>
<td>Sufficient space</td>
<td>This is defined as the minimum size (1.8 m wall length) to: 1. Allow a desk, chair and filing cabinet or bookshelf to be installed 2. Allow space to move around the front and side of the desk 3. Use the chair appropriately and operate the filing cabinet safely. The 1.8m wall size requirement can, in some circumstances, be altered if drawings can prove that a desk can be fitted in any other type of arrangement, i.e. alcove or similar, fulfilling all the above criteria.</td>
</tr>
</tbody>
</table>

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Scaled drawings or a copy of the specification.</td>
<td>As-built drawings or assessor’s site inspection report confirming the details required at the design stage.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

None.

Other information

None.
9.0 Water

Summary

This category encourages sustainable water use in the operation of the building and its site. Issues in this section focus on identifying means of reducing potable water use (internal and external) over the lifetime of the building and minimising losses through leakage.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wat 01 Water efficiency</td>
<td>6</td>
<td>To reduce the use of potable water for sanitary use in new buildings from all sources using water efficient components and water recycling systems.</td>
</tr>
<tr>
<td>Wat 02 Water monitoring</td>
<td>1</td>
<td>Specification of water meters on the mains water supply to encourage water use management and monitoring to reduce the impacts of inefficiencies and leakage.</td>
</tr>
</tbody>
</table>
| Wat 03 Water leak detection and prevention | 2 | Recognition of leak detection systems capable of detecting a major water leak on the mains water supply.
Flow control devices that regulate the supply of water to each WC area or facility to reduce water wastage.
Easily accessible leak isolation valves, to allow leaks to be stopped and then fixed quickly and with minimum water wastage. |
| Wat 04 Water efficient equipment | 1 | Identify a building’s water demand from uses other than domestic scale drinking and sanitary components and mitigate or reduce their water use. |
Wat 01 Water efficiency

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Aim
To reduce the use of potable water for sanitary use in new buildings from all sources through the use of water efficient components and water recycling systems.

Assessment criteria
The following is required to demonstrate compliance:

Up to four credits:
1. Install domestic scale water consuming components where each individual component meets its corresponding water efficiency values required to achieve the targeted performance level as prescribed in table 29.

Up to two credits:
2. Install water efficient domestic/commercial-scale water-consuming components where each individual component meets its corresponding water efficiency values required to achieve the targeted performance level as prescribed in table 30.

Exemplary level criteria:
The following outlines the exemplary level criteria to achieve up to two exemplary credits for this BREEAM issue:

One additional credit- Use of graywater or rainwater systems
3. Achieve performance level 4 under criteria 1.
4. Use graywater or rainwater systems to meet 25% of the potable water demand required for flushing.

Two additional credits- Use of graywater or rainwater systems
5. Achieve performance level 4 under criteria 1.
6. Use graywater or rainwater systems to meet 50% of the potable water demand required for flushing.

Checklists and tables
Table 29–31
Table 29**: BREEAM-SE credits available for use of water efficient components

<table>
<thead>
<tr>
<th>Component</th>
<th>Performance levels (quoted numbers are minimum efficiency required to achieve the level)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance level</td>
</tr>
<tr>
<td>No. of BREEAM-SE Credits</td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td></td>
</tr>
<tr>
<td>Wash hand basin taps</td>
<td></td>
</tr>
<tr>
<td>Wash hand basin taps (only for residential buildings)</td>
<td></td>
</tr>
<tr>
<td>Showers</td>
<td></td>
</tr>
<tr>
<td>Baths</td>
<td></td>
</tr>
<tr>
<td>Urinal (2 or more urinals)</td>
<td></td>
</tr>
<tr>
<td>Urinal (1 urinal only)</td>
<td></td>
</tr>
<tr>
<td>Urinal (flushing)</td>
<td></td>
</tr>
<tr>
<td>Kitchen tap: kitchenette</td>
<td></td>
</tr>
<tr>
<td>Kitchen taps: restaurant (pre-rinse nozzles only)</td>
<td></td>
</tr>
</tbody>
</table>

*a maximum flush volume of 6 L

**Table 29 outlines the standards, by component type, used to define the performance levels set in BREEAM-SE. These defined levels of efficiency have been steered by a range of published sources of information (AECB Water Standards: Delivering buildings with excellent water and energy performance, vol 2) and Taxonomy’s DNSH criteria 3 Sustainable use and protection of water and marine resources.

***Flush and flow rates mentioned under Performance level 3 meets taxonomy requirement.

Table 30: BREEAM-SE credits available for use of water efficient appliances

<table>
<thead>
<tr>
<th>Appliances</th>
<th>Performance levels (quoted numbers are minimum performance required to achieve the level)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance Level</td>
</tr>
<tr>
<td>Number of BREEAM-SE Credits</td>
<td></td>
</tr>
<tr>
<td>Domestic sized dishwashers</td>
<td></td>
</tr>
<tr>
<td>Domestic sized washing machines</td>
<td></td>
</tr>
<tr>
<td>Waste disposal unit</td>
<td></td>
</tr>
<tr>
<td>Commercial-sized dishwashers</td>
<td></td>
</tr>
<tr>
<td>Commercial or industrial sized washing machines</td>
<td></td>
</tr>
</tbody>
</table>

Water-consuming components – data requirements

Table 31: The appropriate data (for each component type) that will need to be collected from manufacturers’ product information to complete the assessment

<table>
<thead>
<tr>
<th>Domestic component</th>
<th>Data requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCs</td>
<td>Actual maximum or, where dual flush, effective flush volume in litres/ use.</td>
</tr>
<tr>
<td>Urinals</td>
<td>Flush volume in litres/use for single use flush urinals. For cistern fed systems, the flushing frequency/hour and cistern capacity in litres.</td>
</tr>
</tbody>
</table>
Domestic component | Data requirements
--- | ---
Taps | Flow rate of each tap, at full flow rate in litres per minute measured at a dynamic pressure:
For high pressure (Type 1) taps: 3 ± 0.2 bar (0.3 ± 0.02 MPa)
OR
For low pressure (Type 2) taps: 0.4 ± 0.02 bar (0.04 ± 0.002 MPa).
This includes any reductions achieved with flow restrictions.

Showers | Flow rate of each shower at the outlet using cold water (T≤ 30 °C), in litres per minute measured at a dynamic pressure:
For high pressure (Type 1) supply systems: 3 ± 0.2 bar (0.3 ± 0.02 MPa)
OR
For low pressure (Type 2) supply systems: 0.1 ± 0.05 bar (0.01 ± 0.005 MPa) (EN 1112, Sanitary tapware. Shower outlets for sanitary tapware for water supply systems type 1 and 2. General technical specifications).
Where the flow rate is ≤ 6.0 l/min, the flow rate at the lower pressure 1.5 ± 0.2 bar shall be ≥ 60 % of the maximum available flow rate. For mixer showers, the reference temperature is 38 ±1 °C.(Appendix E, EU Taxonomy’s DNSH criteria 3 Sustainable use and protection of water and marine resources)

Kitchen taps | Maximum flow rate litres/minute.

Baths | Capacity to overflow in litres. Taps on baths should not be included in the calculation, as the water consumption from bath taps is taken account of in the use factor for baths. The calculation of water consumption for baths will assume 40% of the capacity to the overflow.
This is to reflect that:
1. Users tend not to fill the bath to overflow; and
2. The displacement effect the user has on the actual volume of water required for a bath.

Dishwasher | Litres/cycle for domestic applications or appliances or litres/rack for commercial applications.

Washing machine | Litres/use for domestic applications (for a typical wash cycle) or appliances, or litres/kg for commercial applications or appliances, e.g. in hotels.

Waste disposal unit | Flow rate in litres/minute.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>All criteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell only: This issue is not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell and core: This issue is applicable subject to CN1.1</td>
</tr>
</tbody>
</table>

<p>| CN1.1 | Shell and core assessments | Shell and core |
| | | For components not specified and installed by the developer (i.e., components not within the scope of the shell and core developer and will be installed later as part of the fit-out works), a green fit-out agreement (see Appendix C) that is contractually required from the tenants in their fit-out works can be used for documentation for criteria 1–3. This rule applies only to those areas of the building which are covered in green fit-out agreement. |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Partially fitted: All criteria relevant to the building type and function apply subject to CN2.1. Fully fitted: All criteria relevant to the building type and function applies.</td>
</tr>
<tr>
<td>CN2.1</td>
<td>Water efficiency and partially fitted dwellings</td>
<td>Compliance for this issue must be assessed on the basis of all water-consuming components and greywater or rainwater systems specified and installed by the developer. If some of the components or systems listed in the criteria are not being specified and installed by the developer, but will be specified by the new homeowner, it do not need to be assessed. The minimum standard is still applicable. However, if the new homeowner will be responsible for installing all their own components and systems, no credit can be awarded. The minimum standard is not applicable.</td>
</tr>
<tr>
<td>General</td>
<td>No fittings present in fully fitted building</td>
<td>Where a fully fitted building under assessment contains none of the specified components, the performance specification for components provided in facilities in an adjacent and accessible building must be to show compliance, i.e., those facilities most likely to be used by the occupants and visitors of the assessed building. This rule also applies where a project under assessment consists solely of an extension to an existing building, i.e., where the extended building contains no new sanitary facilities because there are facilities present within the existing building, the performance specification for components provided in facilities in an adjacent and accessible building must be considered to show compliance.</td>
</tr>
<tr>
<td>CN 3.1</td>
<td>Multiple fittings for same water-consuming component type</td>
<td>Where the building under assessment has multiple specifications for the same water-consuming component type, each fitting and component needs to comply with the performance specification mentioned under respective level.</td>
</tr>
<tr>
<td>CN 3.2</td>
<td>National best practice standard for specifying and installing greywater and rainwater systems</td>
<td>The design team should demonstrate compliance with SS-EN 16941-2 for specifying and installing greywater and rainwater systems.</td>
</tr>
</tbody>
</table>

Methodology

Buildings with greywater and rainwater systems

The following information is required where a greywater or rainwater system is specified:

Rainwater:

1. Collection area (m²).
2. Yield coefficient (a coefficient (%) to recognize that some rainwater is lost due to splashing, evaporation, leakage and overflow etc. This coefficient will vary depending on the surface from which the rainwater is collected).
3. Hydraulic filter efficiency (a coefficient (%) to recognize the efficiency of the hydraulic filter).
4. Rainfall (average mm/Year).
 OR
5. Daily rainfall collection (litres) calculated in accordance with credible and verifiable national or local data, e.g. a regional, national or international meteorological organisation, data source or equivalent.
Greywater:

1. Manufacturer or system designer details.
2. The percentage volume of wastewater collected (and reused) from the following (where relevant); wash hand basins, showers, kitchen basins, dishwashers, baths, washing machines and sources of waste water from non-domestic components.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| All | The relevant sections or clauses of the building specification or design drawings confirming technical details of:
 1. Sanitary components
 2. Rainwater and greywater collection system
 OR
 Where detailed documentary evidence is not available at this stage.
 A letter of instruction to a contractor or supplier or a formal letter from the developer giving a specific undertaking, providing sufficient information to allow the water calculations to be completed. | As design stage for post-construction information
And final installed sanitary components manufacturer datasheets or products listed under EU water label
OR
An assessor site inspection report and photographic evidence confirming installation of components in accordance with a compliant specification. |

Additional information

Relevant definitions

Domestic-scale components

Domestic-scale components include water consumed (potable and non-potable) by internal building components including kitchen taps, wash hand basin taps, baths, showers and dishwashers, WCs, urinals, washing machines and waste disposal units.

Effective flush volume

The effective flush volume of a single flush WC is the volume of water used for one flush. The effective flush volume of a dual flush WC is the ratio of full flush to reduced flush. This is taken to be one full flush for every three reduced flushes for non-domestic buildings and one full flush for every two reduced flushes in domestic (residential) buildings or areas. The effective flush volume can therefore be calculated as follows, using a 6/4 litre dual flush volume WC as an example:

- Non-domestic: $$\frac{(6 \text{ litre } x 1) + (4 \text{ litre } x 3)}{4} = 4.5 \text{ litre effective flushing volume (for a 6/4 dual flush WC)}$$
- Domestic: $$\frac{(6 \text{ litre } x 1) + (4 \text{ litre } x 2)}{3} = 4.67 \text{ litre effective flushing volume (for a 6/4 dual flush WC)}$$

The differing ratio between non-domestic and domestic buildings reflects the different patterns of user behaviour between these building types.
Greywater recycling

The appropriate collection, treatment and storage of domestic wastewater (which is defined as that discharged from kitchens, baths or showers, laundry rooms and similar) to meet a non-potable water demand in the building, e.g., WC flushing, or other permissible non-potable use on the site of the assessed building.

Non-potable water

Any water other than potable water, also referred to as unwholesome water.

Potable water

Drinking quality water that is taken from a connection to the main water supply to the building, which may be from the public water supply or from a private supply such as from groundwater via a borehole.

Rainwater recycling

The appropriate collection and storage of rainwater run-off from hard outdoor surfaces to meet a non-potable water demand in the building, e.g. WC flushing, or other permissible non-potable use on the site of the assessed building.

Other information

None.
Wat 02 Water monitoring

Number of credits available	Minimum standards
1 | Yes (criterion 1 only)

Aim

To ensure water use can be monitored and managed, and therefore encourage reductions in water use.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. The specification of a water meter on the mains water supply to each building; this includes instances where water is supplied via a borehole or other private source.
2. Water-consuming plant or building areas, consuming 10% or more of the building’s total water demand, are either fitted with easily accessible sub-meters or have water monitoring equipment integral to the plant or area (see Compliance notes).
3. Each meter (main and sub) has a pulsed or other open protocol communication output to enable connection to an appropriate utility monitoring and management system, e.g. a building management system (BMS), for the monitoring of water use (see Relevant definitions).
4. If the site on which the building is located has an existing BMS, managed by the same occupier or owner (as the new building), the pulsed or digital water meters for the new building must be connected to the existing BMS (see Relevant definitions).

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN1 | Applicable assessment criteria | Criteria 1, 3 and 4
Both options: All criteria relevant to the building type and function apply.
Criterion 2
Shell only: This criterion is not applicable Shell and core. This criterion is applicable. |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1.1</td>
<td>Shell and core assessments</td>
<td>Shell and core assessments. Compliance with criterion 2 must be demonstrated for water-consuming plant or building areas identifiable by the developer (see Relevant definitions). Water-consuming plant or building areas to be added or installed by the tenant do not need to be assessed for this issue.</td>
</tr>
</tbody>
</table>

Residential - Partially fitted and fully fitted

CN2	Applicable assessment criteria – Single dwellings	Both options: Criterion 1 is applicable only
CN2.1	Applicable assessment criteria – Multiple dwellings	Both options: All criteria relevant to the building type and function apply.
CN2.2	Utility company water monitoring equipment	Water meters installed by a water utility company that provide the future homeowner or tenant with accurate and regular water usage information per dwelling will comply with this issue.

General

| CN3 | Water-consuming plant or building area. See criterion 2. | As a minimum, this includes the following (where present):
1. Buildings with a swimming pool and its associated changing facilities (toilets, showers etc.)
2. On sites with multiple units or buildings, e.g. shopping centres, apartment blocks, industrial units, retail parks etc. separate sub-meters are fitted on the water supply to the following areas (where present):
3. Laboratory: in any building with a laboratory (or containing laboratories), a separate water meter is fitted on the water supply to any process or cooling loop for plumbed-in laboratory process equipment. |
| CN3.1 | 10% of water demand. See criterion 2. | The sub-meter requirement does not necessarily apply in the following cases, where the assessor confirms there will be no additional monitoring benefit resulting from their installation:
1. Where a building has only one or two small sources of water demand (e.g. an office with sanitary fittings and a small kitchen)
2. Where the building has two sources of water demand, one significantly larger than the other, and the water use for the larger demand is likely to mask the smaller demand. |
| CN3.2 | Extensions to existing buildings. See criterion 4. | If no new water supply is being installed because the occupants of the extended building will use the facilities in, and therefore water supply to the existing building, then the following must be provided in the existing building:
1. A water meter for the mains water supply
2. Sub-meters for large water-consuming plant or facilities, e.g. evaporative cooling, swimming pool etc. (where present).
The meters provided must have a pulsed output or connection to the existing BMS in accordance with the assessment criteria. |
| CN3.3 | No water supply to the building or unit | If there is no installed water supply to the assessed building because there will be no water-consuming fittings in the building, then in such instances the guidance given in the above compliance note for extensions to existing buildings applies. |
Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>The relevant sections or clauses of the building specification or contract. Design drawings. Estimation of the building’s total tap water use and an estimate of the part / system that uses 10% or more of the building’s total water demand.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence OR As-built drawings OR data from a water metering system showing compliance.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Meter outputs
Examples include pulsed outputs and other open protocol communication outputs, such as Modbus.

Staff areas
Please refer to definition in Hea 01.

Utility monitoring and management system
Examples include automatic meter reading systems (AMR) and building energy management systems (BEMs). Automatic monitoring and targeting (AM&T) is an example of a management tool that includes automatic meter reading and data management.

Other information

None.
Wat 03 Water leak detection and prevention

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building type dependent</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To reduce the impact of water leaks that may otherwise go undetected.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Leak detection system

1. A leak detection system which is capable of detecting a major water leak on the mains water supply within the building and between the building and the utilities’ water meter is installed. The leak detection system must be:
 1.a a permanent automated water leak detection system that alerts the building occupants to the leak
 OR
 1.b an inbuilt automated diagnostic procedure for detecting leaks.
 1.c activated when the flow of water passing through the water meter or data logger is at a flow rate above a preset maximum for a preset period of time.
 1.d able to identify different flow and therefore leakage rates, e.g., continuous, high or low level, over set time periods.
 1.e programmable to suit the owner’s or occupiers’ water use criteria.
 1.f where applicable, designed to avoid false alarms caused by normal operation of large water-consuming plant such as chillers.

One credit – Flow control devices (all buildings except residential)

2. Flow control devices that regulate the supply of water to each WC area or facility according to demand are installed (and therefore minimise water leaks and wastage from sanitary fittings).

One credit – Leak isolation (residential only)

3. Isolation valves are located in an accessible place that allows hot and cold water to be isolated by hand separately (switched on or off) for the following supplies:
 3.a Incoming supply to the dwelling
 3.b Taps
 3.c Showers
 3.d Heating or hot water systems
 3.e Appliances (e.g. dishwasher, washing machine etc.).
Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Leak detection system: criterion 1
Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow control devices: criterion 2
Shell only: This criterion is not applicable. Shell and core: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leak isolation: criterion 3
Both options: This criterion is not applicable.</td>
</tr>
<tr>
<td>CN1.1</td>
<td>WC Areas or facilities</td>
<td>Shell and core:
The water supplies to WC areas or facilities must be assessed as per criterion 2 regardless of whether or not the WC areas or facilities are fitted out.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria</td>
<td>Both options: Criterion 3 only applies.</td>
</tr>
<tr>
<td>CN2.1</td>
<td>Applicable assessment criteria</td>
<td>Partially fitted: Criterion 3 only applies. Fully fitted: Criteria 1 and 3 apply.</td>
</tr>
<tr>
<td>General</td>
<td>Leakage rates.</td>
<td>This issue does not specify what the high- and low-level leakage rates should be; however, the leak detection equipment installed must have the flexibility to distinguish between different flow rates to enable it to be programmed to suit the building type and owner’s or occupiers’ usage patterns.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>System criteria.</td>
<td>It is anticipated that the leak detection credit will usually be achieved by installing a system which detects higher than normal flow rates at meters or sub-meters. It does not necessarily require a system that directly detects water leakage along part or the entire length of the water supply system.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Water utilities’ meters.</td>
<td>Where there is a water utilities’ meter at the site or building boundary, it may be necessary to install a separate flow meter (or alternative measurement system) just after the utility meter to detect leaks; however, if the water utility company agrees to some form of leak detection being installed on their meter, this would also be acceptable.</td>
</tr>
</tbody>
</table>
Flow control devices

The following could be considered as types of flow control devices:

- A time controller, i.e., an automatic time switch device to switch off the water supply after a predetermined interval
- A programmed time controller, i.e., an automatic time switch device to switch water on or off at predetermined times
- A volume controller, i.e., an automatic control device to turn off the water supply once the maximum preset volume is reached
- A presence detector and controller, i.e., an automatic device detecting occupancy or movement in an area to switch water on and turn it off when the presence is removed
- A central control unit, i.e., a dedicated computer-based control unit for an overall managed water control system, utilising some or all of the types of control elements listed above.

Flow control systems

Flow control systems may control combined WC areas, such as male and female toilets within a core; they are not required for each individual sanitary appliance. The criteria are set to encourage the isolation of the water supply to each WC block when it is not being used.

Accessible location

Isolation valves must be located in an accessible location. This could be within a cupboard or access hatch, where the valve can be accessed without undue hazard or difficulty. The valve should be in close proximity to the appliance or fitting and clearly labelled. Examples of non-accessible locations are behind kitchen units or under floor boards.

Single WCs

The flow control criteria for this issue apply to facilities which have only a single WC (potentially within smaller or low occupancy buildings). In these instances shut-off could be provided via the same switch that controls the lighting (whether proximity detection or a manual switch).

No water supply to the building or unit

These credits are still assessed where there are no installed fittings and therefore no water supply to the building. In these instances the facilities likely to be used by the future occupants of the assessed building must meet the criteria, e.g., those facilities within the nearest accessible building.

Extensions to existing buildings

If the water supply to the new extension is via the existing building then the water supply to the existing building must be assessed against the criteria of this issue.

Building type specific

Residential institutions and guest accommodation

The credit for the specification of flow control devices in WC areas or facilities does not apply to ensuite facilities in residential areas, e.g., ensuite facilities in individual private bedrooms and a single bathroom for a collection of individual private bedrooms in halls of residence, key worker accommodation or sheltered accommodation. The credit and criteria are however applicable to buildings which have guest bedrooms with ensuite facilities, e.g., hotel rooms, and communal WC areas or facilities, e.g., communal WC facilities in hotels or hostels and care homes.

<table>
<thead>
<tr>
<th>CN4</th>
<th>Isolation valves in residential dwellings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For each individual dwelling, even apartments in multi-dwelling buildings, incoming water for the entire dwelling needs to be able to be shut off. In addition, the water to all the listed water supply systems (criteria 3a–e) needs to be able to be turned off separately. It also needs to be possible to turn off hot and cold water separately for the respective water supply system.</td>
</tr>
</tbody>
</table>

Methodology

None.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>The relevant sections or clauses of the building specification or contract. Design drawings. Manufacturer’s product details.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence. Manufacturer’s product details.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Isolation valve

An isolation valve is a valve in a plumbing system that stops the flow of water to a given location for maintenance purposes. This enables the flow of water to a terminal fitting, appliance or whole system (e.g. a tap, washing machine, heating system or whole home) to be isolated, thus allowing maintenance or replacement of components or systems.

Other information

None.
Wat 04 Water efficient equipment

Number of credits available	Minimum standards
1 | No

Aim

To reduce water use by encouraging specification of water efficient equipment.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. The design team has identified all water demands from uses other than domestic-scale drinking and sanitary use components, e.g. swimming pools, vehicle wash and irrigation equipment (see Relevant definitions).
2. Measures have been taken to reduce these identified water demands (see CN3.1).

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply. Refer to Appendix C – Shell and core project assessments for a more detailed description of the shell and core assessment options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>No water demand from uses other than domestic-scale drinking and sanitary use components</td>
<td>Where there is no water demand from uses other than domestic-scale drinking and sanitary use components in the building this issue is not applicable and does not require assessment.</td>
</tr>
</tbody>
</table>
BREEAM-SE does not prescriptively define all potential means or solutions for reducing water use. The design team needs to demonstrate to the assessor that they have identified key areas of water use in the building and that a reduction in water use has been achieved using existing ‘tried and tested’ solutions or new innovative solutions relevant to the building and its functional requirements. The following are some examples of solutions deemed to satisfy compliance for a number of different building types or functions (where the water demand for that function is one of the significant contributors in the building).

1. Drip-fed subsurface irrigation incorporating soil moisture sensors. The irrigation control should be zoned to permit variable irrigation to different planting assemblages.

2. Reclaimed or recovered water from a rainwater collection or waste water recovery system with appropriate storage, i.e. greywater collection from building functions or processes that use potable water. The collected rainwater and greywater is used to reduce the amount of potable water used in other systems, such as vehicle wash systems, sanitary facilities, irrigation etc.

3. External landscaping and planting that relies solely on precipitation, during all seasons of the year.

4. All planting specified is restricted to contextually appropriate species that thrive without irrigation and will continue to do so in those conditions likely as a result of climate change, i.e. typically warmer and drier conditions.

Where vehicle wash systems are specified, the design team are to clarify that the installed systems are designed to minimise any legionella risk (refer to BREEAM-SE issue Hea 09 Microbial contamination).

In single dwellings with a garden, the provision of a water butt is sufficient to demonstrate compliance with the criteria. No requirements are set on the type of water butt or storage capacity required. The assessor should be satisfied that, within reason, the installation is adequate for the size of development and climatic conditions of the region.

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Documentation detailing all water demands from uses other than domestic-scale drinking and sanitary use components. The relevant sections or clauses of the building specification or contract OR Design drawings (where necessary). Manufacturer’s product details.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence. Manufacturer’s product details.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Vehicle wash
A commercial scale automatic, semi-automatic or manual system for washing vehicles. This includes wheel and chassis wash, fixed gantry and screen wash systems using brushes, spray or handheld jet hoses.

Water demand
For the purposes of this BREEAM-SE issue, water demand includes, but is not limited to; swimming pools, recreational hot tubs and hydrotherapy pools, equipment used for irrigation, and vehicle wash equipment. Water demand from domestic-scale sanitary fittings is not assessed in this issue but is assessed under issue Wat 01 Water Efficiency.

Other information
None.
10.0 Materials

Summary

This category encourages steps taken to reduce the impact of construction materials through design, construction, maintenance and repair. Issues in this section focus on the procurement of materials that are sourced in a responsible way and have a low embodied impact over their life including extraction, processing and manufacture, and recycling.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat 01 Building climate impact</td>
<td>Up to 5</td>
<td>To contribute towards reducing climate impact of buildings.</td>
</tr>
<tr>
<td>Mat 03 Responsible sourcing of construction products</td>
<td>4</td>
<td>Materials sourced in accordance with a sustainable procurement plan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Key building materials are responsibly sourced to reduce environmental and socio-economic impacts.</td>
</tr>
<tr>
<td>Mat 05 Designing for durability and resilience</td>
<td>1</td>
<td>The building and landscape incorporate measures to reduce impacts associated with damage and wear and tear, thereby prolonging the lifespan of the building.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relevant building elements incorporate appropriate design and specification measures to limit material degradation due to environmental factors.</td>
</tr>
<tr>
<td>Mat 06 Material efficiency</td>
<td>1</td>
<td>Opportunities and measures have been identified and taken to optimise the use of materials.</td>
</tr>
<tr>
<td>Mat 07 Hazardous substances</td>
<td>2</td>
<td>Minimised use of hazardous substances in building materials and installation products.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of logbook for building materials and installations.</td>
</tr>
</tbody>
</table>
Mat 01 Building climate impact

<table>
<thead>
<tr>
<th>Number of points available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent on building type</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Purpose

To contribute towards reducing the climate impact from buildings and create suitable conditions that lead towards measures to reduce greenhouse gas emissions.

Assessment criteria

The following is required to demonstrate compliance with the criteria:

Prerequisite - Climate Declaration

1. All new buildings fulfill the climate declaration requirements in accordance with the (Boverket) Swedish National Board of Housing, Building and Planning’s regulations on climate declaration for buildings i.e., BFS 2021:7. The climate declaration includes the following:
 - **System Boundary**: The entire construction phase, five modules in the construction phase (A1-A5) according to SS EN 15978:2011. For A4 only transport of construction products to the construction site is included in the climate declaration. For A5 only construction waste and energy demanding processes is included in the climate declaration.
 - **Building Elements**: Load-bearing structural parts (such as load-bearing walls, columns, beams and joists) building envelope (elements that consist of one or more layers isolating the interior of a building from outdoors) and interior walls (non-load-bearing walls)
 - **Functional Unit**: Climate impact shall be reported in the unit kgCO₂e/ m² (BTA) Gross floor area.
 - **Calculation tool**: Software or simple calculation tool aligned with Boverket climate database
 - **Building elements Coverage ratio**: Estimation based on building elements coverage ratio. See CN 3.2

2 credits - Life cycle analysis (all buildings)

2. A Life Cycle Analysis (LCA) is to be carried out by the project according to EU Level(s) indicator 1.2: Life cycle GWP (Global Warming Potential) - GHG (Greenhouse gas) and EN 15978:2011 for all life cycle stages to assess the building’s climate impact.

The life cycle analysis (GWP-GHG) shall cover the following:

- **System Boundary**: All life cycle stages, i.e., the Production stage, modules A1-A3; the construction stage, modules A4-A5; the use stage, modules B1-B7; the end-of-life stage, modules C1-C4; and D, Impacts beyond the system boundary
- **Building Elements**: The scope of building elements and technical equipment is defined according to EU Level(s). See Table 35,
• **Default service lives**: The building components’ default service life according to EU Level(s). See Table 35
• **Reference Study period**: The GWP-GHG value is calculated as an average for one year of the reference study period of 50 years
• **Functional Unit**: Climate impact shall be reported in the unit kgCO$_2$e / m2 (BTA)
• **Calculation tool**: See CN 3.4

Up to 3 credits - Reduced climate impact

3. The number of credits awarded is based on the percentage of improvement of the assessed building’s climate impact compared with reference values according to the scope of the Climate Declaration act for buildings. See Table 33 for reference values.

For the climate impact calculation, projects need to calculate building elements coverage ratio for estimation and the estimated result shall be compared with the reference building. See CN 3.2

The percentage improvement determines the number of credits awarded, in accordance with the following table:

<table>
<thead>
<tr>
<th>Improvement against reference values in percentage</th>
<th>Number of BREEAM-SE credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>1</td>
</tr>
<tr>
<td>20%</td>
<td>2</td>
</tr>
<tr>
<td>30%</td>
<td>3</td>
</tr>
</tbody>
</table>

Exemplary level criteria

The following outlines the exemplary level criteria to achieve 1 exemplary credit for this BREEAM issue:

1 credit - Reduced climate impact

4. All credits for criteria 1 and 3 have been awarded.
5. Total 40% improvement of the assessed building’s estimated climate impact compared with a reference building. To receive this exemplary credit, the following must also be fulfilled.
 ◦ At least five credits have been awarded for the indicator Ene 01 Reduction of energy use
 ◦ At least one credit for Preliminary Study for LZC and one exemplary credit has been awarded for the indicator Ene 04 Low carbon design

OR

1 credit - NollCO$_2$ Certification

6. The building has been certified with Sweden Green Building Council’s Net Zero Building Certification system, NollCO$_2$.
Checklists and tables

Tables 32 – 35

Table 33: Reference values for climate impact

<table>
<thead>
<tr>
<th>Type of buildings</th>
<th>Reference values for climate impact in kgCO2e/m² (BTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-residential buildings</td>
<td>310</td>
</tr>
<tr>
<td>Private detached and semi-detached houses</td>
<td>132</td>
</tr>
<tr>
<td>Offices</td>
<td>301*</td>
</tr>
<tr>
<td>Schools</td>
<td>303</td>
</tr>
<tr>
<td>Preschools</td>
<td>258</td>
</tr>
</tbody>
</table>

*This reference value applies to all other buildings covered by the climate declaration in addition to the reported building types in this table.

Table 34: Credits available for each building type

<table>
<thead>
<tr>
<th>Criteria</th>
<th>BREEAM-SE credits available</th>
<th>Other buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Criterion 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Criterion 3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Criteria 4 & 5</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>Criterion 6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2 + 1 exemplary credits</td>
<td>5 + 1 exemplary credits</td>
</tr>
</tbody>
</table>

Table 35: Service life of components, from EU Level(s) (translated into Swedish components) for Life Cycle Analysis

<table>
<thead>
<tr>
<th>Building component</th>
<th>Expected service life</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAB 15.S Foundations for buildings.</td>
<td>60 years</td>
</tr>
<tr>
<td>BSAB 27 Load carrying structure in building framework</td>
<td></td>
</tr>
<tr>
<td>BSAB 49.B Shaft in building</td>
<td></td>
</tr>
<tr>
<td>BSAB 43 Internal room-forming components (non-load bearing).</td>
<td>30 years</td>
</tr>
<tr>
<td>BSAB 45 Building completions (non-load-bearing stairs)</td>
<td></td>
</tr>
<tr>
<td>BSAB 41 Climate-separating parts and completions in roofs and outer floor structures</td>
<td>30 years (35 years for glass facade elements, 10 years for outer coats of paint)</td>
</tr>
<tr>
<td>BSAB 42 Climate-separating parts and completions in the outer wall (non-load bearing)</td>
<td></td>
</tr>
<tr>
<td>BSAB 45 Exterior building completions (balconies, access balconies)</td>
<td></td>
</tr>
<tr>
<td>BSAB 44 Internal surface layers</td>
<td>10 years</td>
</tr>
<tr>
<td>BSAB 46 Room completions (permanently mounted)</td>
<td>10 years</td>
</tr>
<tr>
<td>BSAB 52.B Tap water system</td>
<td>25 years</td>
</tr>
<tr>
<td>BSAB 53.B Wastewater system</td>
<td>25 years</td>
</tr>
<tr>
<td>BSAB 54.B Water fire-extinguishing system</td>
<td>30 years</td>
</tr>
<tr>
<td>BSAB 55 Cooling system</td>
<td>15 years</td>
</tr>
<tr>
<td>BSAB 56.B Hot water system</td>
<td>20 years</td>
</tr>
</tbody>
</table>
Building component

<table>
<thead>
<tr>
<th>Building component</th>
<th>Expected service life</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAB 57 Air handling system (air handling unit/AHU)</td>
<td>20 years</td>
</tr>
<tr>
<td>BSAB 57 Air handling system (other)</td>
<td>30 years</td>
</tr>
<tr>
<td>BSAB 61 Cable-run system</td>
<td>30 years</td>
</tr>
<tr>
<td>BSAB 63 Electric power system (exception BSAB 63. FF/FE/FG/FH)</td>
<td>30 years</td>
</tr>
<tr>
<td>BSAB 63. FF/FE/FG/FH Lighting and light system</td>
<td>15 years</td>
</tr>
<tr>
<td>BSAB 64 Telecommunications system</td>
<td>15 years</td>
</tr>
<tr>
<td>BSAB 71 Elevator system</td>
<td></td>
</tr>
<tr>
<td>BSAB 73 Escalator system and belt-type passenger conveyor system</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Compliance Notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms/Conditions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 1</td>
<td>Applicable assessment criteria</td>
<td>All criteria that are relevant to the building type and the function of the building shall be applicable.</td>
</tr>
<tr>
<td>CN 1.1</td>
<td>Applicable assessment criteria</td>
<td>Criteria 1, 3, 4 & 5: These criteria are not applicable to building types that are not covered by the Boverket Climate Declaration act, such as refurbishment, industry/warehouse, etc.</td>
</tr>
<tr>
<td>CN 2</td>
<td>Applicable assessment criteria – multi-residential buildings</td>
<td>All criteria that are relevant to the building type and the building’s function shall be applicable</td>
</tr>
<tr>
<td>CN 2.1</td>
<td>Applicable assessment criteria – detached or semi-detached private houses</td>
<td>Criteria 1, 3, 4 & 5: These criteria are not applicable to Housing that are not covered by the Boverket Climate Declaration act for buildings, such as private detached and semi-detached houses, etc</td>
</tr>
<tr>
<td>CN 3</td>
<td>Climate data</td>
<td>For criterion 1 Conservatively set generic climate data from Boverkets database or product-specific climate data i.e. Environmental Product declarations (EPDs) can be used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If generic climate data is used, then only data from Boverkets database can be used; other generic climate data cannot be used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Climate data for energy and fuel also must be obtained from the Boverket database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For criterion 2 it is recommended to use product-specific climate data in the first place; generic climate data can be used alternatively.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For criterion 3 it is permissible to use generic climate data other than that of the Boverkets database, and it does not need to be conservatively set, as required in Criterion 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Climate data must be valid (the data must not have expired) at the time specific products are stipulated. Climate data must comply with SS-EN ISO 14025:2010, SS-EN ISO 21930:2020 or SS-EN 15804:2012+A2:2019.</td>
</tr>
<tr>
<td>CN 3.1</td>
<td>Default Climate data for A5.2-A5.5</td>
<td>During the design phase, it is possible to use nationally accepted default climate values for A5.2-A5.5 if there is no project-specific basis. However, during final construction stage, the project-specific climate values of A5.2-A5.5 must be used.</td>
</tr>
</tbody>
</table>
Ref | Terms/Conditions | Description
--- | --- | ---
CN 3.2 | Building elements Coverage ratio | For criterias 1 and 3, Coverage Ratio must be calculated to indicate how well the climate calculation reflects construction of new building. The coverage ratio is calculated by dividing the aggregated cost of all construction products for which climate data is available by the cost for all construction products. (Alternatively, weight can be used in place of cost.) The resulting quotient, expressed as a ratio of these two numbers, corresponds to the coverage ratio.

It is important in the climate declaration to reflect data that corresponds to 100%, and therefore an adjustment is done considering the coverage rate. The value is calculated for the modules A1-A3, A4 and A5.1.

The climate impact (GWP-GHG)100 percent = the climate impact (GWP-GHG) divided by the coverage ratio.

CN 3.3 | Climate impact of reused/recycled building material | The climate impact that arises from reusing/recycling is:
A1-A3: any additional materials used for repairs
A4: Transport of the recycled/reused material
A5: construction and energy processes at the construction site linked to the recycled/reused material

The climate impact from the manufacture of the product can be set to 0 (zero) for all reused/recycled products.

CN 3.4 | Life Cycle Analysis- (GWP-GHG) and Calculation Tools | Criterion 2: If a national Calculation tool exists or is required to obtain a building permit, the respective tool may be used.
Other Calculation Tools may be used if they meet the criteria according to EN 15978:2011.

Methodology:

None

Evidence

Ref	The design phase	Finished building
1 | Climate calculation report according to BBR requirements highlighting background data for the calculations that contain at least the following:
• Life cycle stages and modules
• Building elements and technical equipment
• Details of calculation tool
• Coverage ratio Calculation
• Reporting of GWP-GHG at each life cycle stage
• Source details of climate data used/Copies of the Environmental Product Declaration certificates

AND
A written declaration from the developer stating that the Climate Declaration shall be registered with the Boverket before final permit.

Updated climate declaration report that reflects the finished building.

AND
A copy of the Climate Declaration registered with Boverket.
Ref	**The design phase**	**Finished building**
2 | Life cycle analysis report that reports the GWP-GHG value and the background data for the calculations highlighting the following minimum information:
- Life cycle stages and modules
- Reference study period
- Assessed building elements and technical equipments
- Details of calculation tool used
- Reporting of GWP-GHG at each life cycle stage
- Source details of climate data used/Copies of the Environmental Product Declaration certificates | Updated report that reflects the finished building.

3–5 | Climate calculation Report showing outputs of proposed building with percentage change from baseline building | Updated report that reflects the finished building.

6 | Registration certificate for NolICO₂ certification | Preliminary certificate for NolICO₂

Additional information

Relevant definitions

EPD (Environmental product declaration)

An environmental product declaration is an eco-label verified by an independent party (i.e., an ISO type III label), in accordance with the requirements of ISO 14025. For construction products, the environmental product declaration must be prepared in accordance with either SS-EN 15804:2012+A2:2019, SS-EN ISO 14025:2010 or SS-EN ISO 21930:2020.

The EPD reports environmental indicators for a product – either a commodity or a service – over the entire or selected parts of its life cycle. The environmental indicator “Global Warming Potential” (GWP-GHG) reports the climate impact of the commodity or service.

EU Level (s)

EU Level (s) is a voluntary reporting framework that building specialists in Europe can adopt to measure, report, and share the environmental performance of their buildings.

Life cycle analysis (GWP-GHG)

A life cycle analysis that looks only at climate impact is calculated as GWP-GHG, which includes the overall effect of greenhouse gas emissions but not the uptake and emissions of biogenic carbon dioxide.

Reference building

Building with corresponding functions as the assessed building. Values for the reference building are obtained from Boverket and the value shall include the corresponding law on climate declaration for buildings.
In order to calculate and report the environmental impact of construction products in an Environmental Product Declaration (EPD), the calculation standard SS-EN 15804 is used together with reporting rules “Product Category Rules” (PCR) for each category of construction product.

For a building’s EPD, the calculation method standard SS-EN 15978 is used together with a PCR for buildings.

Generic data (Average climate data) are used for the life cycle analysis that is representative of construction products used in the Swedish market. Generic Climate Data for construction products in Boverket are conservatively set, i.e., approximately 25 percent higher than the average value calculated for the product group. Generic climate data from Boverket climate database can be retrieved from Boverket website.

Other information:

EU Level(s) indicator 1.2: Life cycle Global Warming Potential (GWP)
This is a manual wherein the EU Commission informs about the entire process of EU level(s) Life Cycle GWP calculation.

NollCO₂
NollCO₂ is a certification system for buildings developed by SGBC and its members. The certification system consists of criterias for reduced climate impact and criterias for climate measures that balance the remaining climate impact to net zero.

The Climate Declaration Handbook
In this digital handbook, Boverket informs about rules and the entire process of climate declaration for buildings according to the law (2021:787) on climate declaration for buildings § 1 §.
Mat 03 Responsible sourcing of construction products

Number of credits available	Minimum standards
4 | Yes (criterion 1 only)

Aim

To recognise and encourage the specification and procurement of responsibly sourced construction products.

Assessment criteria

The following is required to demonstrate compliance:

Prerequisite

1. All timber and timber-based products used on the project are Legally harvested timber.
2. All timber and timber-based products used on the project are Legally traded timber.

Note: All timber and timber based products used on the project refers to timber and timber based products integrated in the building.

One credit – Sustainable procurement plan

3. By the end of concept design stage, the client or developer has a documented policy and procedure that sets out procurement requirements for all suppliers and trades to adhere to relating to the responsible sourcing of construction products (see CN3).
4. The documented policy and procedure must be disseminated to all relevant internal and external personnel and included within the construction contract to ensure that they are enforceable on the assessed project.
5. The documented policy and procedure must encourage the specification of products with responsible sourcing certification over similar products without certification.

Up to three credits – Responsible sourcing of construction products

6. The available responsible sourcing credits (refer to Table 36) can be awarded where the applicable construction products (refer to Table 37) are responsibly sourced in accordance with the BREEAM-SE methodology, as defined in the Methodology section. Building elements is registered in the Mat 03 tool to calculate the number of credits for this criteria.

Table 36: The number of BREEAM-SE credits achieved is determined as follows

<table>
<thead>
<tr>
<th>Responsible sourcing credits</th>
<th>% of available Responsible sourcing points achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>≥ 36</td>
</tr>
<tr>
<td>2</td>
<td>≥ 20</td>
</tr>
<tr>
<td>1</td>
<td>≥ 10</td>
</tr>
</tbody>
</table>
Exemplary level criteria

The following outlines the exemplary level criteria to achieve one exemplary credit for this BREEAM-SE issue:

7. Where at least 52% of the available responsible sourcing points are achieved.

Checklists and tables

Table 36–38.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Documented product procurement policy. See Criterion 3.</td>
<td>The policy may be prepared and adopted at an organisational level or be site or project specific. If the policy relates to multiple projects or an organisation risks and opportunities with contracts should be identified and evaluated against a broad spectrum of social, environmental and economical issues according to SS-ISO 20400.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Checking responsible sourcing claims. See criterion 6.</td>
<td>Confirmation of manufacturers’ and suppliers’ claims should be sought from the relevant responsible sourcing scheme provider. Many of the organisations who administer responsible sourcing certification schemes will, via their website, list companies and products that have been certified against their standards, including the scope of any such certification.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Route 1 Cut-off See step 1 in the Methodology section.</td>
<td>Any construction product in the following location or use categories (see Table 36) which clearly accounts for less than the following volumes can be excluded from the assessment according to the method and criterion 6. The volume considered should be taken as the construction product’s overall external dimensions, including any internal voids and air spaces. Minor fixings (brackets, nails, screws etc.), adhesives, seals and ironmongery would normally fall below this threshold. Also, see CN3.5.</td>
</tr>
<tr>
<td></td>
<td>• ’Internal partition and internal walls (including finishes)’: Less than 0.33 m³ per 1000 m² of gross internal floor area (bruttoarea/BTA).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ’Ceiling (including ceiling finishes)’: Less than 0.33 m³ per 1000 m² of BTA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All other location or use categories: Less than 1 m³ per 1000 m² of BTA.</td>
<td></td>
</tr>
<tr>
<td>CN3.3</td>
<td>Broken chain</td>
<td>To recognise responsible sourcing certification where it does exist in the supply chain, while reducing the risks associated with a broken chain, it is permissible to use the upstream certification score where the downstream risk to responsible sourcing is considered to be low. For more information see Guidance Note 24 available on the SharePoint for AP and assessors.</td>
</tr>
</tbody>
</table>
Ref | Terms | Description
--- | --- | ---
CN3.4 | Quantities precision See criteria 6. | The degree of tolerance accepted for estimating quantities is ± 20% of the final installed quantity.
It is not necessary for the assessor to submit calculations in order to justify estimates. In particular, the cut-off estimation for many construction products (that are clearly below the cut-off) may be done without the need for any calculations at all.

CN 3.5 | Example for documentation that proves legally harvested and traded timber | BOTH legally harvested AND legally traded must be proven to comply with the prerequisite.
Legally harvested:
- Product with FSC, PEFC or Nordic Swan Ecolabel certificate
OR
- Documentation that proves that EU:s timber regulations been complied with
- For products that the projects has bought inside the EU it is enough with information about where, which country and from which supplier the product has been bought to prove legally harvested. Evidence can be a certificate from a suitable person within the project.
Other information about legal harvesting
If endangered species is used a CITES certificate is required.
Legally traded:
- Product with FSC, PEFC or Nordic Swan Ecolabel certificate
OR
- Risk assessment/Due diligence documentation that shows a low risk that the products bought does not fulfil the requirements in the manual.
More information about risk assessments and legally harvested and traded timber can be read under Relevant definitions.
Legally harvested and traded timber can be proven by an attestation from the suppliers that guarantee that the demands is fulfilled.

Methodology

To determine the number of credits achieved for criterion 6, either route 1 or 2 must be followed for each material category. For alternative 1 no quantities need to be filled in the tool. This makes alternative 1 less exact and may therefore lead to less credits than alternative 2.

When the quantity of a product is not known, use alternative 1. When the quantities are known, use alternative 2. A combination of alternative 1 and 2 may be used for a project. For example, alternative 1 may be used on wood-based products and alternative 2 for metals. Only one alternative per material category may be used.

In the following steps shows the process for determining the number of credits achieved.

For examples and a further explanation of this method, along with a simplified methodology for building services construction products, see Guidance Note (GN) 24, available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.
Step 1: Collating information and entering it in the Mat 03 calculator tool

For all routes, the Mat 03 calculator tool is used according to the following steps.

1. For each construction product in the building that is in the scope (see Table 38 under ‘Scope of assessment’ section below):

 Note: For Route 1, steps 1.2 and 1.6 is optional. Step 1.4 is optional for routes 1 and 2.

 Step 1.1 Estimate if the quantity of the product is above the cut-off volume (see CN3.2). If it is, enter the construction product in the tool and assign it a ‘Location and use’ category, then proceed to the next step. If the quantity meets the cut-off then the product can be excluded.

 Step 1.2 (Route 2 only): Estimate the quantity (mass or volume) of the product (see CN3.4).

 Step 1.3: Obtain the BREEAM-SE recognised responsible sourcing certifications scheme (RSCS) certification or environmental management system (EMS1) certification, if any (see CN3.1). Compare the certification with Guidance Note 18 (available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs) and obtain the RSCS point score. Where the construction product has no certification, is non-compliant with broken chain requirements (see CN3.3) or the certification type is not listed in Guidance Note 18, the score is zero. Where the construction product is a reused or recycled product, obtain the score from Guidance Note 18 for these products.

 Step 1.4 (Optional, if not being followed go to step 1.5): Where a constituent construction product has a better certification score (see CN3.1) than the overall construction product and it complies with the broken chain requirements (see CN3.3), the following steps should be followed:

 - **Step 1.4.1:** Identify the materials categories that make up an estimated ≥ 80% of the constituent construction product’s volume
 - **Step 1.4.2:** Include each identified materials category in the tool (by creating new rows in the tool).
 - **Step 1.4.3:** If ≥ 5% of the volume is unaccounted for in step 1.4.1, include the ‘Other’ material category.
 - **Step 1.4.4** (Route 2 only): For each material following route 2 and identified in step 1.4.1, enter the building-wide quantity into the tool. This may be based on a percentage of the overall construction product’s quantity estimated in step 1.1.
 - **Step 1.4.5:** For each material category (including ‘Other’), enter the constituent’s certification score identified in step 1.4 into the tool.

 Step 1.5: Identify the materials categories that make up an estimated ≥ 80% of the product’s volume (excluding quantities entered for step 1.4.1, if applicable).

 Step 1.6: Include each identified materials category in the tool (by duplicating the entry made in step 1.1).

Step 2: BREEAM-SE Scoring and reporting tool

Step 2.1: Enter the credit result produced by the Mat 03 calculator into the BREEAM-SE scoring and reporting tool.
Scope of Assessment

Table 37 (based on the New Rules of Measurement (NRM) classification system) indicates the building elements that must be included in the scope of the assessment. Including these elements (and only these) is necessary to ensure an appropriate level of comparability. All construction products that are installed as part of one or more of these building elements are in scope and must be included in the Mat 03 calculator tool. For each building element the respective location or use category for use in the Mat 03 calculator tool is provided in the table.

Table 37: Scope assessment, common building elements

<table>
<thead>
<tr>
<th>Elements</th>
<th>Location or use category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof coverings</td>
<td>Including roof finishes</td>
</tr>
<tr>
<td>Doors and windows</td>
<td></td>
</tr>
<tr>
<td>Slabs</td>
<td>Including floor finishes</td>
</tr>
<tr>
<td>Isolation</td>
<td></td>
</tr>
<tr>
<td>Walls and partitions</td>
<td>Including finishes</td>
</tr>
<tr>
<td>Roof structures</td>
<td>Including roof finishes</td>
</tr>
<tr>
<td>Frames – Primary and secondary</td>
<td></td>
</tr>
<tr>
<td>External walls</td>
<td>Including finishes</td>
</tr>
<tr>
<td>Installations</td>
<td></td>
</tr>
<tr>
<td>Hard landscaping</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

The material categories, for use in the Mat 03 calculator tool, must be in accordance with Table 38. For each construction product, identify the closest matching category.

Table 38: Material categories

<table>
<thead>
<tr>
<th>Material categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Timber or timber-based products</td>
</tr>
<tr>
<td>2. Concrete or cementitious</td>
</tr>
<tr>
<td>3. Metal</td>
</tr>
<tr>
<td>4. Stone or aggregate</td>
</tr>
<tr>
<td>5. Clay-based</td>
</tr>
<tr>
<td>6. Gypsum</td>
</tr>
<tr>
<td>7. Glass</td>
</tr>
<tr>
<td>8. Plastic, polymer, resin, paint, chemicals and bituminous</td>
</tr>
<tr>
<td>9. Animal fibre, skin, cellulose fibre</td>
</tr>
<tr>
<td>10. Other</td>
</tr>
</tbody>
</table>
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>Written confirmation from the principal contractor or client that all timber and timber-based products will be sourced in compliance with the definition of Legally harvested and Legally traded timber or has certification that fulfils these requirements OR A specification or letter of intent from the design team confirming that all timber and timber-based products will be procured in accordance with the BREEAM-SE requirements.</td>
<td>Documentary evidence confirming all timber and timber-based products used in the building is legally harvested and traded timber. See also CN 3.5.</td>
</tr>
<tr>
<td>3–5</td>
<td>A copy of the documented sustainable procurement plan. Evidence that the plan is disseminated, or a written commitment to do so. Evidence that the plan is included in the construction contract, or a written commitment to do so. Evidence that there is a policy to encourage the specification of products with responsible sourcing certification.</td>
<td>Evidence that the plan was disseminated. Evidence that the plan was included in the construction contract.</td>
</tr>
<tr>
<td>6</td>
<td>A copy of the completed Mat 03 calculator tool. A copy of all responsible sourcing and EMS certificates OR A letter of intent from the design team or other detailed documentary evidence confirming that the products shall be sourced from suppliers capable of providing the required certification. For affected certified construction products, evidence on how the broken chain requirements are met.</td>
<td>Written confirmation that the documentary evidence provided at the design stage was followed during construction. Where different from the design stage, provide updated documentary evidence that was followed during construction. Where certified materials were used, copies of certificates AND Corresponding invoices and delivery receipts. For post-construction stage assessment only, provide a copy of the Mat 03 calculator and detailed documentary evidence (as listed for the design stage) AND corresponding invoices and delivery receipts.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

BREEAM International 2016 Mat 03 calculator

A calculator tool used by the BREEAM-SE Assessor to determine the number of BREEAM-SE credits achieved for BREEAM-SE issue Mat 03. The BREEAM International 2016 Mat 03 calculator is available at SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.
BREEAM-SE recognised responsible sourcing certification schemes (RSCSs)

These are third party schemes evaluated by SGBC/BRE Global for recognition under BREEAM-SE. Refer to Guidance Note 18, available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs, for information on the evaluation criteria and the process for the evaluation and acceptance of schemes, including application and appeals.

Convention on International Trade in Endangered Species (CITES)

The Convention on International Trade in Endangered Species of wild fauna and flora (CITES) works by subjecting international trade in specimens of selected species to certain controls. All import, export, re-export and introduction from the sea of species covered by the Convention has to be authorised through a licensing system. Each Party to the Convention must designate one or more Management Authorities in charge of administering that licensing system and one or more scientific authorities to advise them on the effects of trade on the status of the species. The species covered by CITES are listed in three appendices, according to the degree of protection they need.

1. Appendix I includes species threatened with extinction. Trade in specimens of these species is permitted only in exceptional circumstances.
2. Appendix II includes species not necessarily threatened with extinction, but in which trade must be controlled in order to avoid utilisation incompatible with their survival.
3. Appendix III contains species that are protected in at least one country, which has asked other CITES Parties for assistance in controlling the trade.

Appendices I and II of the CITES list illustrate species of timber that are protected outright. Appendix III of the CITES list illustrates species that are protected in at least one country. If a timber species used in the project is on Appendix III it can be included as part of the assessment as long as the timber is not obtained from the country or countries seeking to protect this species.

European Union Timber Regulation (EUTR)

Prohibits illegal trading with timber and timber-based products within EU and ESS.

Legally harvested and traded timber

Legally harvested timber and wood-derived products are those that originate from a forest where the following criteria are met:

1. The forest owner or manager holds legal use rights to the forest
2. There is compliance by both the forest management organisation and any contractors with local and national legal criteria including those relevant to:
 a. Forest management
 b. Environment
 c. Labour and welfare
 d. Health and safety
 e. Other parties’ tenure and use rights
 f. All relevant royalties and taxes are paid.
3. There is full compliance with the criteria of CITES.
Legally traded means timber or products derived from Legally harvested timber were:

1. Exported in compliance with exporting country laws governing the export of timber and timber products, including payment of any export taxes, duties or levies
2. Imported in compliance with importing country laws governing the import of timber and timber products, including payment of any import taxes, duties or levies
3. Traded in compliance with legislation related to the convention on international trade in endangered species (CITES), where applicable.

New Rules of Measurement

NRM provides a standard set of measurement rules and essential guidance for the cost management of construction projects and maintenance works. For more information visit: http://www.rics.org/.

Responsible sourcing

The management and implementation of sustainable development principles in the provision, procurement and traceability of construction materials and components. In BREEAM-SE, this is demonstrated through auditable third-party certification schemes.

Responsible sourcing certification scheme point scores

A graded scale to reflect the rigour of the certification scheme used to demonstrate responsible sourcing, forming the basis for awarding credits in the BREEAM-SE issue Mat 03. Refer to Guidance Note 18, available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs, for an up-to-date table of RSCSs recognised by SGBC/BRE Global Ltd for the purposes of a BREEAM-SE assessment.

Risk assessment

The purpose of the risk assessment is to identify and not accept timber from sources with high risk of illegal trading. The risk assessment should be carried out by a suitable person in the project and should determine how big the risk is that the timber have not been legally traded throughout the process

Other information

None.
Mat 05 Designing for durability and resilience

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage adequate protection of exposed elements of the building and landscape, therefore minimising the frequency of replacement and maximising materials optimisation.

Assessment criteria

The following is required to demonstrate compliance:

One credit

Protecting vulnerable parts of the building from damage

1. The building incorporates suitable durability and protection measures, or designed features or solutions to prevent damage to vulnerable parts of the internal and external building and landscaping elements. This must include, but is not necessarily limited to:

 1.a Protection from the effects of high pedestrian traffic in main entrances, public areas and thoroughfares (corridors, lifts, stairs, doors etc.)

 1.b Protection against any internal vehicular or trolley movement within 1m of the internal building fabric in storage, delivery, corridor and kitchen areas

 1.c Protection against, or prevention from, any potential vehicular collision where vehicular parking and manoeuvring occurs within 1m of the building façade for all car parking areas and within 2m for all delivery areas.

Protecting exposed parts of the building from material degradation

2. The relevant parts of the building incorporate appropriate design and specification measures to limit material degradation due to environmental factors (see Methodology for the process to assess this criterion).

See Table 39 in the Checklists and tables section for a list of applicable elements, environmental factors and material degradation effects to consider.

Checklists and tables

Table 39.
Table 39: Applicable building elements, environmental factors and material degradation effects to consider

<table>
<thead>
<tr>
<th>Applicable building elements, environmental factors and material degradation effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable building elements</td>
</tr>
<tr>
<td>1. Foundation, substructure, lowest floor, retaining walls</td>
</tr>
<tr>
<td>2. External walls</td>
</tr>
<tr>
<td>3. Roof or balconies</td>
</tr>
<tr>
<td>4. Glazing: windows, skylight</td>
</tr>
<tr>
<td>5. External doors</td>
</tr>
<tr>
<td>6. Railings or balusters (where exposed to external environment)</td>
</tr>
<tr>
<td>7. Cladding (where exposed to external environment)</td>
</tr>
<tr>
<td>8. Staircases or ramps (where exposed to external environment)</td>
</tr>
<tr>
<td>Environmental factors</td>
</tr>
<tr>
<td>1. Environmental agents, including:</td>
</tr>
<tr>
<td>a. Solar radiation</td>
</tr>
<tr>
<td>b. Temperature variation</td>
</tr>
<tr>
<td>c. Water or moisture</td>
</tr>
<tr>
<td>d. Wind</td>
</tr>
<tr>
<td>e. Precipitation, e.g. rain and snow</td>
</tr>
<tr>
<td>f. Extreme weather conditions: high wind speeds, flooding, driving rain, snow</td>
</tr>
<tr>
<td>2. Biological agents, including:</td>
</tr>
<tr>
<td>a. Vegetation</td>
</tr>
<tr>
<td>b. Pests, insects</td>
</tr>
<tr>
<td>3. Pollutants, including:</td>
</tr>
<tr>
<td>a. Air contaminants</td>
</tr>
<tr>
<td>b. Ground contaminants.</td>
</tr>
<tr>
<td>Material degradation effects (includes, but not necessarily limited to the following)</td>
</tr>
<tr>
<td>1. Corrosion</td>
</tr>
<tr>
<td>2. Dimensional change, e.g. swelling or shrinkage</td>
</tr>
<tr>
<td>3. Fading or discolouration</td>
</tr>
<tr>
<td>4. Rotting</td>
</tr>
<tr>
<td>5. Leaching</td>
</tr>
<tr>
<td>6. Blistering</td>
</tr>
<tr>
<td>7. Melting</td>
</tr>
<tr>
<td>8. Salt crystallisation</td>
</tr>
</tbody>
</table>
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN1 | Applicable assessment criteria | Protecting vulnerable parts of the building from damage: criterion 1
Where the identified vulnerable parts of the building form part of the shell and core developer’s remit:
Both options: All assessment criteria relevant to the building type and function apply and must be accounted for in the assessment of this issue.
Where the identified vulnerable parts of the building do not form a part of the shell and core developer’s remit, e.g. they are in lettable areas and compliance is subject to the tenant’s or future occupier’s fit-out specification:
Both options: These areas can be excluded from assessment.
Protecting exposed parts of the building from material degradation: criterion 2
Both options: All criteria relevant to the building type and function apply. |
| **Residential – Partially fitted and fully fitted** | | |
| CN2 | Applicable assessment criteria
– Single dwellings | Protecting vulnerable parts of the building from damage: criterion 1
Both options: Criteria 1.a and 1.b are not applicable.
Protecting exposed parts of the building from material degradation: criterion 2
Both options: All criteria relevant to the building type and function apply. |
| CN2.1 | Applicable assessment criteria
– Multiple dwellings | Protecting vulnerable parts of the building from damage: criterion 1
Both options: All criteria relevant to the building type and function apply.
Protecting exposed parts of the building from material degradation: criterion 2
Both options: All criteria relevant to the building type and function apply. |
| **General** | | |
| CN3 | Suitable durability measures.
See criterion 1. | Suitable durability and protection measures to vulnerable parts of the building can include:
1. Bollards or barriers, or raised kerbs to delivery and vehicle drop-off areas
2. Robust external wall construction, up to 2 m high
3. Protection rails to walls of corridors
4. Kick plates or impact protection (from trolleys etc.) on doors
5. Hard-wearing and easily washable floor finishes in heavily used circulation areas (i.e. main entrance, corridors, public areas etc.)
6. Designing out the risk without the need for additional materials specification to protect vulnerable areas. |
| CN3.1 | Vehicle impact protection.
See criterion 1.c. | Any vehicle impact protection measures specified must be positioned at an adequate distance from the building to protect the fabric from impact from any vehicle with a measurable overhang of the body from the wheel track, in particular for any goods delivery areas.
In vehicle movement areas only: where the external robust wall construction is specified to comply with the credit, additional protection must be provided to ensure against potential damage to the robust façade from vehicle movement, i.e. specifying bollards or protection rails. |
CN3.2 Preventing excessive material use

The specification or design measures chosen should reflect the need to balance the additional specification of materials with the need to protect building elements to minimise their replacement, insuring against excessive material use and promoting materials optimisation.

See Mat 06 Material efficiency.

CN3.3 Public or common areas

Consideration should be given to materials specification in public or common areas (especially public waiting areas and toilet areas) to provide protection against potential malicious or physical abuse, as far as possible.

CN3.4 Underground car parks

Exposed elements, such as columns in an underground car park, should have been designed against structural damage from minor vehicle collision and, therefore, do not require any additional protection to meet compliance for this BREEAM Issue. Assessors should, however, consider whether additional protection is required at the vehicular entrance to underground car parks.

Methodology

Protecting exposed parts of the building from material degradation

The following outlines the process to assess criterion 2 for newly specified materials and construction elements:

1. Identify from the design team suitable competences for evaluating newly specified materials and construction elements to limit material degradation due to environmental factors.

 Example for suitable members in the design team: Architect, Structural Engineer, Moisture Expert, Facility Management (if known).

2. Identify from the list of ‘applicable building elements’ under Table 39 the elements that are appropriate to the building being assessed.

3. Establish from the ‘environmental factors’ list those factors that are likely to cause material degradation effects in the identified applicable building elements.

4. Confirm the design and specification measures in place to limit these degradation effects.

5. The assessor should use their professional judgment in determining whether the design team have adequately demonstrated that they have designed and specified materials or measures which will be effective in preventing unnecessary deterioration, so reducing frequent replacements, repairs and maintenance through the life cycle of the building.

6. At the post-construction stage, where the design and specification measures installed differ from those proposed at the design stage, the assessor must ensure that these measures still meet the aims of the criterion as detailed in point 4.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design drawings illustrating vulnerable areas or parts of the building. Design drawings or specification confirming the durability of the measures specified.</td>
<td>Assessor’s building or site inspection, or photographic evidence confirming compliance.</td>
</tr>
</tbody>
</table>
Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Design drawings confirming the applicable elements. Documentary evidence for the</td>
<td>As interim design stage and based on as-built drawings.</td>
</tr>
<tr>
<td></td>
<td>environmental factors and material degradation effects considered relevant to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>building. Design and specification measures in place to limit degradation effects.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Where relevant manufacturer’s technical details confirming the material degradation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>effect militated by the specified product.</td>
<td></td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Materials efficiency

Please refer to the definition in Mat 06.

Other information

One way of documenting material degradation is to use and update the template “Moisture design document” from the Swedish Industrial standard ByggF. The template holds different building construction and a method of risk evaluation for the design team. The method could be used to evaluate material degradation due to environmental factors as well as moisture problems. See Man 06.
Mat 06 Material efficiency

Aim

To recognise and encourage measures to optimise material efficiency in order to minimise the environmental impact of material use and waste without compromising on structural stability, durability or service life of the building.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. Opportunities have been identified, and appropriate measures investigated and implemented, to optimise the more efficient use of materials in building design, procurement, construction, maintenance and end of life.

2. The above is carried out by the design or construction team in consultation with the relevant parties (see CN3) at each of the following project work stages:

 2.a Preparation and Brief (Förstudie)
 2.b Concept Design (Tidigt programhandlingsskede)
 2.c Developed Design (Programhandlingsskede)
 2.d Technical Design (Systemhandlingsskede)
 2.e Construction. (Byggskede)

Checklists and tables

Table 40.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>
Ref | Terms | Description
--- | --- | ---
General
CN3 | Relevant parties | All parties (as relevant to the project stage) involved in the design, specification or construction of the building should be consulted. This includes, but is not limited to, the following:
1. Client or developer
2. Cost consultant
3. Architect
4. Structural or civil engineers
5. Building services engineers - mechanical, electrical
6. Principal contractor
7. Demolition or strip-out contractor
8. Environmental consultant
9. Project management consultant
10. Materials or component manufacturers or suppliers.

CN3.1 | Evidence requirements | The evidence required to demonstrate compliance will vary according to the work stage; examples of how material efficiency could be considered have been provided in Table 40. To demonstrate compliance, as a minimum BREEAM-SE Assessors must ensure that the measures and outputs under the 'evidence' column have been met.

Methodology
None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>See compliance note CN3.1, one or more appropriate evidence types can be used to demonstrate compliance with the criteria requirements.</td>
<td></td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Material efficiency

The process of undertaking a building project to enable the most efficient use of materials over the life cycle of the building and its components. This includes using fewer materials, reusing existing demolition and strip-out materials and, where appropriate, procuring materials with higher levels of recycled content. It may also include the adoption of alternative means of design or construction that result in lower materials usage and lower wastage levels including off-site manufacture and use of pre-assembled service pods.
Other information

Table 40: Examples of material efficiency consideration at each work stage.

The following table is based on the principles set out in parts 1 and 2 of the BS 18895 series of standards, and provides some examples of how material efficiency can be considered at each work stage. As a minimum, the measures listed under the ‘evidence’ column have been met to show compliance with the issue.

<table>
<thead>
<tr>
<th>Work Stage</th>
<th>Objective</th>
<th>Participants</th>
<th>Action</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation and Brief</td>
<td>To set requirements that will inform decisions throughout the design and construction.</td>
<td>Client or client’s agent with input from the design team.</td>
<td>Assess the site, the likely project scale, and the client’s functional and aesthetic requirements to set material efficiency objectives for the project.</td>
<td>Dedicated report that sets out a clear framework to guide material efficiency activities throughout the design and construction of the project. The report should set out aims, objectives, targets, performance indicators, opportunities, constraints and responsibilities to guide material efficiency activities.</td>
</tr>
<tr>
<td>Concept Design</td>
<td>Develop strategies to implement or action the materials efficiency requirements set under the Preparation and Brief stage.</td>
<td>Design team.</td>
<td>Hold workshops with the project team to identify design opportunities to reduce or optimise materials use through design, specification, construction techniques etc.</td>
<td>Minutes of the workshops held. Documentation demonstrating how the feedback from the workshop has been incorporated in the concept design of the project, for example: outline specification for materials selection, report on predicted reductions in material quantities.</td>
</tr>
<tr>
<td>Developed Design and Technical Design</td>
<td>Developed design proposals based on learning from the concept design.</td>
<td>Design team</td>
<td>Incorporate material efficiency measures and strategies identified in concept design into architectural, structural and building services design as appropriate. Review performance against previous stages and identify deviations.</td>
<td>Report on deviations from previous stages. Documentation demonstrating the incorporation of the outcomes from the concept stage, for example: design drawings or specifications demonstrating materials efficiency measures undertaken.</td>
</tr>
<tr>
<td>Construction</td>
<td>Implement material efficiency measures in construction.</td>
<td>Principal contractor</td>
<td>Implement material efficiency measures and strategies identified in previous stages in building construction and identify deviations. Identify further efficiencies as appropriate for this stage.</td>
<td>Report on deviations from previous stages. Documented evidence of activity to further identify efficiencies at this stage, for example: meeting minutes, training events, waste reduction documentation etc.</td>
</tr>
</tbody>
</table>
BS 8895 Designing for material efficiency in building projects

This standard outlines specific material efficiency processes, key tasks, team members and their responsibilities and outputs specific to each work stage, along with supporting guidance and tools. This serves as a useful tool to assist the design team in developing and implementing material efficiency strategies for their developments.

The standard is comprised of the following four parts:

Optimising material use

Optimising material use is one the key resource efficiency goals for any sustainability strategy. This involves various components to ensure efficient use of materials, waste prevention and reduction, minimal damage to the environment and depletion of natural resources. This new BREEAM-SE issue aims to encourage and support efforts to reduce the amount of materials used in building design without compromising on the structural stability and other performance factors. SGBC and BRE intends to further develop the assessment criteria for this issue in future updates of BREEAM-SE, and as such SGBC would welcome any feedback on the application of this assessment issue to assist with the evolution of the criteria and inclusion of additional guidance on compliance in future BREEAM-SE versions.
Mat 07 Hazardous substances

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

The aim is to encourage use of products that contain none, or low levels of hazardous substances and have low negative effect on health and environment. Furthermore, it is to simplify future reuse of products and materials from the building and identify hazardous substances.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Logbook and phase out of hazardous substances - building products and chemical products

1. Building elements according to table 41 and all uncured chemical products that are built into the building fulfil the requirements for the highest concentration of phase-out substances according to Table 42.
2. Building elements according to table 41 and all uncured chemical products that are built into the building are documented in a logbook with information about:
 - Product’s name
 - Supplier’s name
 - Content of the product
 - Approximate position in the building
 - Approximate amount
 - Deviation justifications (if present)

One credit – Logbook and phase out of hazardous substances – installation products

3. Criteria 1 – 2 has been achieved.
4. Products for installations according to Table 43 fulfil the requirements for the highest concentration of phase-out substances according to Table 42.
5. Products for installations according to table 43 are documented in the same logbook as building products according to criterion 2.
Exemplary level criteria

The following outlines the exemplary level criteria to achieve one exemplary credit for this BREEAM-SE issue:

6. Criterion 1–2 has been achieved.
7. Building elements according to table 41 and all uncured chemical products that are built into the building are in accordance with EU regulations for REACH criteria for substances of very high concern (SVHC).
8. Building elements according to table 41 and all uncured chemical products that are built into the building are documented in same logbook as criterion 2 which confirms the absence of substances of very high concern (SVHC) listed on REACH candidate list.

Checklists and tables

Table 41–43.

Table 41: List of building elements to check and document

<table>
<thead>
<tr>
<th>Building elements according to BSAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>• E Cast-in-situ concrete</td>
</tr>
<tr>
<td>• F Brick work</td>
</tr>
<tr>
<td>• G Constructions of prefabricated elements</td>
</tr>
<tr>
<td>• H Constructions of sections</td>
</tr>
<tr>
<td>• I Layers of thermal insulation materials</td>
</tr>
<tr>
<td>• J Layer of building paper, sealing compound, asphalt, sheeting, plastic foil, toughened sheet.</td>
</tr>
<tr>
<td>• K Coated boards</td>
</tr>
<tr>
<td>• L Plaster (render), painting, protective coatings, impregnation etc.</td>
</tr>
<tr>
<td>• M laminate</td>
</tr>
<tr>
<td>• N Component products</td>
</tr>
<tr>
<td>• Z Construction of various types</td>
</tr>
</tbody>
</table>

Table 42: List of phase-out substances as defined by the Swedish Chemicals Agency (Kemiakleinspektionen, KEMI)

<table>
<thead>
<tr>
<th>Property</th>
<th>Classification according to the CLP regulation for determination of the intrinsic properties</th>
<th>Maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinogenic</td>
<td>(Carcinogenicity, Category 1A and 1B)</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>H350: May cause cancer...*</td>
<td></td>
</tr>
<tr>
<td>Mutagenic</td>
<td>(Germ cell mutagenicity, Category 1A and 1B)</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>H340: May cause genetic defects...*</td>
<td></td>
</tr>
<tr>
<td>Toxic to reproduction</td>
<td>(Reproductive toxicity, Category 1A and 1B)</td>
<td>0.3%</td>
</tr>
<tr>
<td></td>
<td>H360: May damage fertility or the unborn child...*</td>
<td></td>
</tr>
<tr>
<td>Endocrine disrupter</td>
<td>Substances classified in categories 1 and 2 in the EDs database (Substances classified according to categories 1 and 2 of the European Commission database for endocrine substances. Priority list Appendix 1)</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
Property Classification according to the CLP regulation for determination of the intrinsic properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Classification</th>
<th>Maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particularly hazardous metals (Cd, Hg, Pb)</td>
<td>Mercury, cadmium, lead and compounds of these metals are all phase-out substances. Specific criteria are not because the presence of these metals is enough.</td>
<td>Cd 0.01% Hg 0.1% Pb 0.1%</td>
</tr>
<tr>
<td>PBT /vPvB – Persistent, Bioaccumulating, Toxic / very Persistent, very Bioaccumulating</td>
<td>Criteria available at Kemikalieinspektionens website</td>
<td>0.1%</td>
</tr>
<tr>
<td>Ozone-depleting substances (0.1%)</td>
<td>(Hazardous to the ozone layer)</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

EUH059: Hazardous to the ozone layer

H420: Harms public health and environment by destroying ozone in the upper atmosphere.

Table 43: List of installation products to control and document

Building elements according to BSAB

- PD – Wells etc.
- PN – Pipelines etc
- PP - Devices for anchoring, expansion, protection of pipelines
- PR - Wells, scuppers, gutters etc.
- PS - valves, etc. in liquid systems and gas systems
- PU - Sanitary units and equipment
- PVB - Taps, mixers etc. in tap water systems
- QK - Silencers
- QL - Ventilation ducts etc.
- QM - Air diffusers etc.
- R- Insulation of installations
- SBF - Systems for electrical trunking
- SBQ - Ducting, Conduits
- SC - Electricity and telephone cables, etc.
- SD - splices, connectors etc. in electrical or telecommunications systems
- SM – Sockets in the electrical power system
- SN - Lighting fixtures, lamps, etc.

Compliance notes

Shell and core (non-residential and residential institutions only)

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply. For construction products that will be delivered / installed at a later stage, and which are not in the scope of the developer, a green fit-out agreement (see appendix C) must be used to document fulfilment of criteria 1. This rule only applies to those areas of the building covered by the green fit out agreement.</td>
</tr>
<tr>
<td>Ref</td>
<td>Terms</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Documentation for Declarations of content</td>
<td>Content should be declared in accordance with the directives of Building product declarations (BPD) version 2015 or 3 or later and eBVD 1.0. In addition, other types of documents stating that the content is declared in accordance with the rules for building product declarations version 3 or later are accepted. Content declarations should not be older than 5 years at the time of purchase. Older documentation where the supplier have not certified that the content list is still relevant can be allowed if handled as deviations according to CN3.2.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Deviations – Phase-out substances</td>
<td>Products in table 41 and 42 that contain phase-out substances can be used if justified in a written deviation authorized by the building owner or by a person designed by the building owner. Deviations shall include a justification of why products that meet the requirements are not appropriate and what alternative products that has been examined. The deviation should also include a risk assessment and measures implemented to minimize the risks. Deviations due to a failure in checking product contents are not acceptable. For the exemplary level, deviations are not accepted within products in the criteria 7.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Deviations – Contents of the product</td>
<td>Building materials and uncured chemical products that lack the Declaration of contents of the product in accordance with the level of requirements in BPD may be used if justified in a written deviation authorized by the building owner or by a person designated by the building owner. Deviations shall include a justification of why products that meet the requirements are not appropriate and a list of what alternative products that have been examined. Deviations due to a failure in checking a product’s documentation are not acceptable. For the exemplary level, deviations are not accepted within products.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Small products</td>
<td>Fittings, screws, lock cases and similar small products does not need to be included in the logbook for credit one and two.</td>
</tr>
<tr>
<td>CN3.4</td>
<td>Stainless steel</td>
<td>Stainless steel is allowed to be assessed by the alloys properties, and not by the properties of the constituent elements. The Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures (CLP) also support this conclusion. The following requirements need to be met for stainless steel: The steel grade or standard does not contain substances with 'phasing-out' properties above the criteria specified levels and: 1. the steel grade contains less than 1% nickel or 2. the steel grade contains less than 0.1% Sulphur or 3. the nickel release in a standardized in vitro test (SS-EN 1811:2011+A1:2015) is <0.5ug/cm2/weekly in accordance with CLP</td>
</tr>
<tr>
<td>CN3.5</td>
<td>Product level</td>
<td>Assess and document building materials at the product level (as delivered to the construction site).</td>
</tr>
<tr>
<td>CN3.6</td>
<td>Alternative selection of endocrine disruptors</td>
<td>Substances classified as endocrine disrupters according SIN-list from Chemsec can be used instead of the EDc database.</td>
</tr>
</tbody>
</table>
Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–5</td>
<td>Draft logbook of prescribed material that meet the requirements of criteria 2 and 5.</td>
<td>Completed logbook of prescribed material that meet the requirements of criteria 2 and 5. The logbook states how each product has been checked for phase-out substances.</td>
</tr>
<tr>
<td></td>
<td>The logbook states how each product has been checked for phase-out substances.</td>
<td></td>
</tr>
<tr>
<td>7–8</td>
<td>Draft logbook over prescribed material according to criterion 8. The logbook states how each product been checked for phaseout and REACH substances.</td>
<td>Completed logbook over prescribed material according to criterion 8. The logbook states how each product been checked for phase-out and REACH substances.</td>
</tr>
<tr>
<td>All</td>
<td>Draft logbook over prescribed material according to criterion 8. The logbook states how each product been checked for phaseout and REACH substances.</td>
<td>Random samples of at least ten products noted by the assessor during a construction site visit are included in the logbook. At least 80% of the random samples must be in the finished logbook when checked by the assessor.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

None.

Other information

Building Products Assessment Systems and systems for logbook

The Building Products Assessment is a tool for evaluating and providing information on environmentally assessed building products. It works to influence product development towards a non-toxic and well-built environment. The environmental assessment is carried out based on criteria that evaluate the properties of substances and a product’s life cycle impact (environmental impact in manufacture, use and disposal as waste). The item can receive the rating “Recommended”, “Accepted” or “Avoid”.

The registration contains the product’s Safety Data Sheet (chemical product), technical specifications, content declaration and also the results of emission tests (for indoor products). Byggvarbedömningen, SundaHus miljödata or Basta are some of the recommended Building Products assessment tools and systems for logbook that can be used. Logbook in Basta must be supplemented with a declaration of content for each product.

The REACH Regulation

Regulation (EU) No 1907/2006 concerns the registration, evaluation, authorization and restriction of chemical substances.
11.0 Waste

Summary

This category encourages the sustainable management (and reuse where feasible) of construction and operational waste and waste through future maintenance and repairs associated with the building structure. By encouraging good design and construction practices, issues in this section aim to reduce the waste arising from the construction and operation of the building, encouraging its diversion from landfill. It includes recognition of measures to reduce future waste as a result of the need to alter the building in the light of future changes to climate.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wst 01 Construction waste management</td>
<td>3</td>
<td>Development of a construction resource management plan. Reducing construction waste related to on site construction and off-site manufacture or fabrication. Diverting non-hazardous construction (on site and dedicated off-site manufacture or fabrication) and demolition generated by the project from landfill.</td>
</tr>
<tr>
<td>Wst 02 Recycled aggregates</td>
<td>1</td>
<td>Percentage levels of recycled or secondary aggregate specified against set targets.</td>
</tr>
<tr>
<td>Wst 03a Operational waste</td>
<td>1</td>
<td>Provision of suitable space and facilities to allow for segregation and storage of operational recyclable waste volumes generated by the assessed building or unit, its occupants and activities.</td>
</tr>
<tr>
<td>Wst 03b Operational waste</td>
<td>2</td>
<td>Provision of suitable space and facilities to allow for segregation and storage of operational recyclable waste volumes generated by the assessed building or unit, its occupants and activities.</td>
</tr>
<tr>
<td>Wst 04 Speculative finishes</td>
<td>1</td>
<td>Specification of floor and ceiling finishes only where agreed with the occupant or for tenanted areas where the future occupant is not known, carpets, other floor finishes and ceiling finishes are installed in a show area only to reduce wastage.</td>
</tr>
<tr>
<td>Wst 05 Adaptation to climate change</td>
<td>1</td>
<td>Encourage consideration and implementation of measures to mitigate the impact of more extreme weather conditions arising from climate change over the lifespan of the building.</td>
</tr>
<tr>
<td>Wst 06 Functional adaptability</td>
<td>1</td>
<td>Encourage consideration and implementation of measures to support circularity, disassembly and flexibility throughout the service life of the building.</td>
</tr>
</tbody>
</table>
Wst 01 Construction waste management

Number of credits available	Minimum standards
3 | Yes

Aim

To promote resource efficiency via the effective and appropriate management of construction waste.

Assessment criteria

This issue is split into two parts:

- Construction waste reduction (2 credits)
- Increased extent of recycling (1 credit)

The following is required to demonstrate compliance:

Construction waste reduction

One credit

1. Where appropriate targets for the amount of non-hazardous and hazardous waste produced on site are set in kg of waste per 100 m² gross internal floor area (bruttoarea/BTA).
2. Procedures are in place to minimise non-hazardous and hazardous waste in line with the targets.
3. The amount of site construction waste created is being monitored and targets regularly reviewed.
4. The design or site management team has nominated an individual responsible for implementing the above.
5. A pre-demolition audit of any existing buildings, structures or hard surfaces is completed to determine if refurbishment or reuse is feasible and, if not, to maximise the recovery of material from demolition for subsequent use, prioritising high grade or value applications. The audit must cover:
 5.a Identification of the key refurbishment and demolition materials
 5.b Potential applications and any related issues for the reuse and recycling of the key refurbishment and demolition materials.
6. Using the collated data, report the amount of waste generated per 100 m² gross internal floor area (bruttoarea/BTA) in kg from the construction process via the BREEAM-SE scoring and reporting tool.

One credit

7. Criteria 1 to 6 (where applicable) are achieved.
8. Procedures are in place for sorting, reusing and recycling construction waste into at least five defined waste groups (see the Swedish Construction Federations (Byggföretagen) guidelines for resource and waste during construction and demolition 2021), where possible on site.
Sorting off site is an option only when sorting on site is not possible, which needs to be justified. If sorting is performed off-site, generic data is not accepted.

Increased extent of recycling

One credit

9. A significant quantity of non-hazardous construction and demolition waste (where applicable) generated by the project has been recycled according to the figures within Table 44 below:

Table 44: BREEAM-SE targets for recycling diversion from landfill

<table>
<thead>
<tr>
<th>Type of waste</th>
<th>One credit</th>
<th>Exemplary level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction and demolition waste</td>
<td>≥ 70% (by weight) of non-hazardous construction and demolition waste generated by the project has been recycled.</td>
<td>≥ 80% (by weight) of non-hazardous construction and demolition waste generated by the project has been recycled.</td>
</tr>
</tbody>
</table>

10. Construction and demolition waste will be sorted into separate key waste groups (according to the waste streams generated by the scope of the works), where possible on site (see the Swedish Construction Federations (Byggföretagen) guidelines for resource and waste during construction and demolition 2021). Sorting off site is only an option only when sorting on site is not possible, which needs to be justified.

11. Using the collated data, report the following via the BREEAM-SE scoring and reporting tool (this applies to construction and demolition waste, where applicable):

 11.a Destination of the non-hazardous waste leaving the site (i.e., address and facility); and
 11.b Level of waste recycled as kg of waste per 100 m² (see Compliance notes).

Exemplary level criteria

The following outlines the exemplary level criteria to achieve an exemplary credit for this BREEAM-SE issue:

12. Criteria 1 to 11, (where applicable) are achieved.

13. The percentage of non-hazardous construction and demolition waste (if relevant) recycled meets or exceeds the exemplary level percentage benchmark (outlined in Table 44).

Checklists and tables

Table 44.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>
Residential – Partially fitted and fully fitted

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>CN3</th>
<th>Extensions to existing buildings</th>
<th>For assessments of extensions to existing buildings, where only the extension is being assessed, it is only the extension that must comply.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3.1</td>
<td>Recycling</td>
<td>Recycling includes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Reusing the material on site (in situ or for new applications)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Reusing the material on other sites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Salvaging or reclaiming the material for reuse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Returning material to the supplier via a ‘take-back’ scheme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Recovery of the material from the site by an approved waste management contractor and subsequently being recycled.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Limited site space for segregation and storage</td>
<td>Where space on site is too limited to allow waste materials to be segregated, a waste contractor may be used to separate and process recyclable materials off-site. Similarly, manufacturers’ take-back schemes could also be used. Where this is the case, sufficient documentary evidence must be produced which demonstrates that segregation of materials is carried out to the agreed levels and that materials are reused or recycled as appropriate.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Waste from temporary support structures</td>
<td>Some projects require temporary works that fall outside the scope of normal construction methods or practices, for example, projects that require bespoke temporary steelwork supports for façade retention. If it can be demonstrated that the components and materials used will be either reused or, if this is not possible, recycled after use then these may be excluded from the construction waste of this issue. However the strategy for ensuring resource efficient design of the temporary works and an explanation of the reuse or recycling of the materials concerned must be reported in the site waste management plan, including a full justification for exemption, and provided to SGBC. This justification will be reviewed by SGBC and BRE Global on a case-by-case basis and must be approved prior to these credits being awarded.</td>
</tr>
<tr>
<td>CN3.4</td>
<td>Joint waste management</td>
<td>When the same contractor works on a construction site with more than one project the management, measurement and monitoring may be done collectively if it can be motivated why separate waste management is impractical.</td>
</tr>
</tbody>
</table>

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>A copy of the specification or contract or other formal document confirming waste procedures, including recycling and targets OR a letter from the client or their representative. Where relevant, a copy of the pre-demolition audit.</td>
<td>A copy of the waste procedures, including recycling and targets. Monitoring records or report. Where relevant, a copy of the pre-demolition audit.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Appropriate targets

These can be set according to best practice (where available) and will depend on the type of waste and the opportunities for reuse on site. Targets could also be set to improve on data from similar past projects or which are working towards a company target. The design team should justify why the targets are deemed appropriate. A target is NOT deemed to be an ‘appropriate target’ within this issue solely because it is achievable.

Note: Targets and measurements should exclude demolition and excavation waste as this varies from project to project (and is addressed in the ‘diversion from landfill’ credit).

Inert waste

Waste is considered inert if:

1. it does not undergo any significant physical, chemical or biological transformations
2. it does not dissolve, burn or otherwise physically or chemically react, biodegrade or adversely affect other matter with which it comes into contact in a way likely to give rise to environmental pollution or harm to human health; and
3. its total leachability and pollutant content and the ecotoxicity of its leachate are insignificant and, in particular, do not endanger the quality of any surface water or groundwater (taken from the European Community (EC) Directive 1999/31/EC on the landfill of waste).

Pre-demolition audits

These provide detailed information on materials that can be reclaimed and recycled, so reducing the cost and environmental impact of waste disposal, bringing savings from reusing existing materials and earnings from selling those that are not needed. They:

1. Identify volumes of wastes so that your company can plan ‘reuse, recycling and recovery’ activities prior to work starting.
2. Are tailor-made for each demolition project including:
 a. Identifying markets for recycled or recovered material
 b. Identifying reclamation and reuse potential both on-site and off-site
 c. Local and national material valuation
 d. Segregation recommendations
 e. Environmental quantification.
3. Increase material and labour efficiency, reduce waste and maximise profit.
Other information

Site waste management plan

The implementation of a site waste management plan (SWMP) can help manage the site construction waste produced. The aim of a SWMP is to promote resource efficiency and to prevent illegal waste activities. Resource efficiency includes minimising waste at source and ensuring that clients, designers and principal contractors assess the use, reuse and recycling of materials and products on and off the site. A SWMP consists of a combination of commitments to:

1. design out waste.
2. reduce waste generated on site.
3. develop and implement procedures to sort and reuse or recycle construction waste on and off-site (as applicable).

Data obtained from measuring and monitoring site construction waste can then be used to check performance against targets and benchmarks, analyse the effectiveness of any solutions implemented and strive for continual improvement.
Wst 02 Recycled aggregates

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage the use of recycled and secondary aggregates, thereby reducing the demand for virgin material and optimising material efficiency in construction.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Recycled aggregates

1. At least 25% of the high-grade aggregate uses (within the development) are provided by secondary or recycled aggregate. This percentage can be measured using either weight or volume.

2. The recycled or secondary aggregates are

 2.a Construction, demolition and excavation waste obtained on site or off-site
 2.b Secondary aggregates (see Relevant definitions).

Exemplary level criteria

The following outlines the exemplary level criteria to achieve an exemplary credit for this BREEAM-SE issue.

3. Where the total amount of recycled or secondary aggregate specified is greater than 50% (by weight or volume) of the total high-grade aggregate specified for the project.

4. The contributing recycled or secondary aggregate can be either obtained from a place where it is equally long or shorter than the retrieval of virgin material, alternatively obtained within a radius of no more than, or equal to, 30 km from the construction site when the raw material can be obtained from a shorter distance or be obtained at higher distances but transported by rail or boat to the construction site.

Checklists and tables

None.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Swedish legislation regarding waste and by-product</td>
<td>Swedish legislation on waste and by-products should be followed: Avfallsdirektivet (the Waste Directive, 2008/98/EC), Miljöbalken (the Environmental Code, Chapter 15. 1 §), Avfallsförordningen (the Waste Ordinance, 2011:927) and Miljöprövningsförordningen (the Environmental Assessment Regulation). The general rules and precautionary principles in Miljöbalken, as well as the Miljöprövningsförordning, Avfallsförordningen and Förordning om ändring I avfallsförordningen and any precautions taken by regulators, should be followed and applied. See also Addition information.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Recycled aggregates in concrete</td>
<td>Where Swedish standards, limit the use of recycled aggregates in concrete (typically applicable to bound aggregate uses as listed), the onus for achieving this credit is on the unbound uses (see Methodology). For recycled aggregates in concrete, the concrete standard SS137003: 2021 (Table 6), applies. As an example, for some exposure classes, no recycled demolition materials are allowed. A note is needed to clarify the impact on the strength of the construction and that the technical requirements of the constructor are met.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>National restrictions on the use of recycled aggregates</td>
<td>Where the use of recycled aggregates is restricted, this credit cannot be achieved by default. Where Swedish standards include a maximum permitted level of less than 50% recycled aggregate, the exemplary credit can be achieved where the percentage of recycled aggregates used is greater than or equal to 35%. Where there is no maximum level, the 50% requirement must be achieved in order to award this credit.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Off-site recycled aggregates</td>
<td>Where off-site recycled aggregates from construction, demolition and excavation waste are used, they should be produced according to the relevant standards for aggregates.</td>
</tr>
<tr>
<td>CN3.4</td>
<td>Aggregates in off-site manufactured applications</td>
<td>Where high grade aggregate uses have been incorporated into applications manufactured off-site, the aggregate present in these applications should be included in the assessment of this issue.</td>
</tr>
<tr>
<td>CN3.5</td>
<td>Air-cooled blast furnace slag as a secondary aggregate</td>
<td>Air-cooled blast furnace slag is classified as a by-product (rather than a waste) and can therefore be used as an aggregate without the need for a quality protocol. The slag used must meet the requirements of the European and aggregates standards that apply to the end use application (e.g. bitumen bound, unbound etc.).</td>
</tr>
</tbody>
</table>

Methodology

SS137003: 2021 (Table 6) controls the maximum level of recycled aggregates in concrete depending on different exposure classes, such as XC1 and XC4. If a project has 1000 m³ of aggregates, 100 m³ are aggregates in the concrete and the exposure class limits the use of recycled aggregates in concrete to 10 %, the required level of recycled aggregates for Wst 02 is \((900 \times 0.25) + (100 \times 0.1) = 235\) m³. It is up to the Design team to show that these requirements are applicable.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Relevant section and clauses of the building specification or contract. Project team calculations. Documentation confirming the source of recycled or secondary aggregates and that the required amount can be provided.</td>
<td>Calculations detailing the weights (or volumes) and types of aggregate provided for each application. Delivery notes (or confirmation from the supplier) of the types and quantities of aggregates provided on site. Delivery notes for all recycled and secondary aggregates confirming: • Source of recycled/secondary aggregate. • The concentration of different contaminants in the recycled/secondary aggregates”. Confirmation that the materials meet the appropriate standards.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

High Grade aggregate uses

High Grade aggregate uses are considered to be:

Bound

1. Structural frame
2. Floor slabs including ground floor slabs
3. Bitumen or hydraulically bound base, binder, and surface courses for paved areas and roads.

Unbound

1. Asphalt-based or similar road surfaces
2. Granular fill and capping
3. Pipe bedding
4. Subbases and building foundations
5. Gravel landscaping.

Low grade aggregate uses

Crushed masonry used as fill material for general landscaping is not considered to be high grade. This practice is now common place on construction sites due to increased landfill costs.

Recycled aggregates

Recycled aggregates are those derived from reprocessing materials previously used in construction, e.g. crushed concrete or masonry from construction and demolition waste material. Recycled aggregates may include aggregates from excavation on the site.
Secondary aggregates

1. China clay waste
2. Slate overburden
3. Pulverised Fuel Ash (PFA)
4. Ground Granulated Blast Furnace Slag (GGBFS)
5. Air-cooled blast furnace slag
6. Steel slag
7. Furnace Bottom Ash (FBA)
8. Incinerator bottom ash
9. Foundry sands
10. Recycled glass
11. Recycled plastic
12. Spent oil shale
13. Colliery spoil
14. Municipal solid waste treatment residues.

Swedish legislation regarding waste and by-products

According to Miljöbalken the operator shall carry out operations with minimal environmental impact. Miljöprovningsförordningen addresses the use of recycled filler material that has a degree of pollution which can be comparable to “low risk” or higher. “Low risk” comes under the standard SFS 2016:1188 Anmälningsplikt C (Obligation to notify C) operations code 90.141 and is thereby notifiable to the Environmental Office (or corresponding municipal facilities). Today there are no existing regulations in Sweden that clearly describes what can be used in bounded products and therefore the rules of consideration and the precautionary principles of Miljöbalken apply. For unbound materials, the Environmental Protection Agency’s (Naturvårdsverket) Återvinning av avfall i anläggningsarbeten and its clarifications can be used.

The waste producer has a responsibility to inform the operator that will use the waste, of its properties to ensure that waste is disposed of in a healthy and environmentally acceptable manner. In addition to Avfallsförordningen and classification of hazardous waste, the waste must meet technical requirements of the constructor for it to be suitable for use in bound materials such as concrete or asphalt.

When reusing aggregates a risk assessment should be performed where the material is to be recycled. The risks are divided into “MRR” (Minor Risk), “MR” (Low Risk) and “Inte endast är ringa” (Not only low risk). Naturvårdsverkets “Handbook on recycling in construction” suggests that certain uses of waste do not even entail a “low risk” (less than Minor risk, “MRR”) and that such use does not need to be notified to the municipality.

Other information

None.
Wst 03a Operational waste
(non-residential and residential institutions only)

Number of credits available

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage the provision of dedicated storage facilities for a building’s operational-related recyclable waste streams, so that this waste is diverted from landfill or incineration.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Operational waste

1. Dedicated space is provided for the segregation and storage of operational recyclable waste volumes generated by the assessed building or unit, its occupants and activities. This space must:
 1.a clearly labelled, to assist with segregation, storage and collection of the be recyclable waste streams.
 1.b be accessible to building occupants or facilities operators for the deposit of materials and collections by waste management contractors.
 1.c be of a capacity appropriate to the building type, size, number of units (if relevant) and predicted volumes of waste that will arise from daily or weekly operational activities and occupancy rates.
 1.d cater for the separation and storage of a minimum of 8 different types of recyclable materials and relevant hazardous waste in accordance with producer responsibility and the local waste collection scheme requirements (see compliance note CN3).

2. Where the consistent generation in volume of the appropriate operational waste streams is likely to exist, e.g., large amounts of packaging or organic waste generated by the building’s use and operation, the following facilities are provided:
 2.a Static waste compactors or balers; situated in a service area or dedicated waste management space
 2.b Vessels for suitable organic waste resulting from the building’s daily operation and use; OR adequate space for storing segregated food waste prior to collection and delivery to an alternative composting or anaerobic digestion facility
 2.c Where organic waste is to be stored or composted on site, a tap is provided adjacent to or within the facility for cleaning and hygiene purposes.

Additionally for long term stay residential institutions with self-contained dwellings only

3. Each dwelling has a provision of three internal storage containers, as follows:
 3.a A minimum total capacity of 30 litres
3.b No individual container smaller than 7 litres
3.c All containers in a dedicated non-obstructive position
3.d The storage containers for recycling are provided in addition to non-recyclable waste storage.

4. Home composting facilities and a home composting information leaflet is provided within the kitchen area for each self-contained dwelling.

Additionally for long term stay residential institutions with individual bedrooms and communal facilities only

5. The above storage requirements (criterion 3) for self-contained dwellings or bedsits are met for every six bedrooms.
6. The recyclable storage is located in a dedicated non-obstructive position in either:
 6.a communal kitchens OR
 6.b where there are no communal kitchens present, in a communal space such as communal lounges or utility areas.
7. Home composting facilities and a home composting information leaflet is provided within the kitchen area or communal space for each individual bedrooms and communal facilities self, bedsit or communal kitchen.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN1 | Applicable assessment criteria | Operational waste: criteria 1 and 2
Both options: All criteria relevant to the building type and function apply.

Additional criteria for residential institutions: criteria 3 to 7
Both options: These criteria are not applicable.

<p>| CN1.1 | End-occupier not known. See criterion 2. | If the end-occupier is not known, but the functions or areas of the assessed building suggest that large amounts of packaging or compostable waste is likely to be generated during the building’s operation, e.g. it is a retail or industrial project or contains a large catering facility then an appropriately sized space and services or infrastructure to accommodate the relevant facilities must be provided. The facilities themselves do not necessarily need to be provided or installed to demonstrate compliance. |
| CN2 | Applicable assessment criteria – Single and multiple dwellings | Both options: This issue is not applicable. |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN3 | Waste fractions and dedicated space. See criteria 1 and 2. | The dedicated space must be large enough to cater for the separation and storage of a minimum of 8 different types of recyclable materials and relevant hazardous waste. These may include:
 • Packaging
 - Paper packaging
 - Cardboard packaging
 - Corrugated board packaging
 - Plastic packaging
 - Metal packaging
 - Glass packaging
 • Wastepaper
 • Electric and electronic products
 • Light sources
 • Batteries
 • Paint, lacquer and glue
 • Oil and grease
 • Solvents
 • Biocides
 • Other chemicals
 • Waste oil
 • Aerosol sprays
 • Food waste

The design team must demonstrate that the provision of waste management facilities for the assessed building is adequate given the building type, occupier (if known), operational function and likely waste streams and volumes to be generated. Where it is not possible to determine what provision should be made, the following guide for minimum storage space provision should be used:
 • At least 2 m² per 1000 m² of net floor area (bruttoarea/BTA) for buildings < 5000 m²
 • A minimum of 10 m² for buildings ≥ 5000 m²
 • An additional 2 m² per 1000 m² of net floor area (BTA) where catering is provided (with an additional minimum of 10 m² for buildings ≥ 5000 m²).

The net floor area (BTA) should be rounded up to the nearest 1000 m² |
| CN3.1 | Extensions to existing buildings | Where there are facilities within the existing building, these can be used to assess compliance. The scope of these facilities must be adequate to cater for the total volume of predicted recyclable waste arising from the new and existing buildings. |
| CN3.2 | Multiple building assessments and buildings that form part of a wider estate. See criterion 1.c. | Where the assessment applies to one or more buildings or units that are part of a wider estate or campus, the design team can choose to demonstrate compliance through the provision of dedicated centralised storage space and waste management facilities with the capacity to accommodate the recyclable waste material generated from all buildings and their activities. |
### Ref	Terms	Description
CN3.3 | Limited space or vehicle access for a compactor or baler. See criterion 2. | For sites that have limited space for static installations, compliance can be assessed on the basis of the provision of adequate space for a smaller portable compactor or baler.

CN3.4 | Internal storage areas | Where the facilities are situated internally, vehicular gate heights and widths and manoeuvring and loading space must be sized to ensure ease of access for vehicles collecting recyclable materials.

CN3.5 | Residual waste | The area for storage of recyclable materials must be provided in addition to areas and facilities provided for dealing with general waste and other waste management facilities, e.g. compactors, balers and composters.

CN3.6 | Automated waste collection systems | These are accepted as a form of compliance as long as a management plan is in place, which can either be public (local authority) or private and requirements for separation are met.

Building specific

CN4 | Home composting information leaflet (multi-residential buildings). See criteria 3, 4, 5 and 6. | The leaflet must provide information on:
- How composting works and why it is important
- The materials that can be composted (e.g. raw vegetable peelings and fruit, shredded paper, tea bags, etc); and Details of the operation and management plan for the communal composting scheme.
- Where a green or kitchen waste collection scheme is in operation, the information leaflet provided by the Local Authority is sufficient to meet the information leaflet criteria.

CN4.1 | Residential institutions: supported living facility | Where it is not possible to locate the recycling bins within a communal area, which is accessible to residents, for safety reasons (e.g. where the residents have mental health problems and free access to these facilities would pose significant risk of self-harm or harm to others) it is acceptable to locate them within a dedicated non-obtrusive position accessible to staff only, but in close proximity to the areas where recyclable waste material is generated.

CN4.2 | Small industrial units. See criterion 1. | For an industrial building or development or site consisting of a number of smaller units, each ≤ 200m² floor area, shared facilities that meet the above criteria for the building or site as a whole are sufficient to achieve this credit.

CN4.3 | Shopping centres and retail parks. See criterion 1. | For shopping centres and retail parks there must be adequate space to cater for each tenant and their potential recyclable waste volumes. Tenants that occupy a large proportion of the centre, i.e. ‘flagship tenants’, must have their own dedicated compliant facilities. For smaller non-flagship tenant units, compliant central or common facilities on site or dedicated spaces for individual units will meet the assessment criteria for this BREEAM-SE issue.

Methodology

None.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| All | Design drawings or relevant section or clauses of the building specification confirming provision and scope of dedicated facilities (on-site and off-site).
 • The design drawings or relevant section or clauses of the building specification should demonstrate that the dedicated facilities are accessible to building occupants or facilities operators for the deposit of materials
 • Waste management contractors for the collection of materials.
Project team meeting minutes or a letter confirming likely building waste streams and indicative volumes.
Calculations demonstrating that the dedicated facilities have been dimensioned in accordance with the likely building waste streams and indicative volumes. | As design stage.
BREEAM-SE Assessor’s site inspection report and photographic evidence confirming compliant installation. |

Additional information

Relevant definitions

Accessible space

Accessible space is typically within 20m of a building entrance. Depending on the size of the building, site restrictions or tenancy arrangements, it may not be possible for the facilities to be within 20m of a building entrance. In such circumstances, judgment on whether the space is ‘accessible’ to the building occupants and vehicle collection must be made.

Automated waste collection system

Some companies now offer a fully automated underground system for the collection, sort and transport of waste. It allows for waste separation at the source, for different types of waste and from multiple locations, with enhanced hygienic, occupational health and safety standards. It also reduces the use of waste transport by lorries, reducing nuisance and CO₂ emissions, from fossil fuel consumption.

Dedicated non-obstructive position

An easily accessible cupboard under the sink or any other cupboard in the kitchen, next to the storage or likely area for storing non-recyclable waste, where practical. Where a kitchen cupboard location is not possible the bins can be located near to the kitchen, in a utility room or connected garage, for example.

Flagship or anchor tenant

The largest and primary tenant within a retail development, typically department store type retailers.
Waste compactor or baler

A machine that is designed to compress waste streams in order to improve storage and transport efficiency.

Other information

Recyclable storage

The following footprint dimensions can act as a guide when determining size and accessibility criteria for the recyclable storage space:

1. Compactor dimensions: about the size of one car parking bay; 4.8 x 2.4m
2. Skip: the footprint of an 8 and 12 cubic yard skip measures 3.4m x 1.8m; therefore allow a minimum of 2.0m width and 4.0m length or 8m² area for the storage and access of such containers
3. Wheeled bins: 360 litres = 0.86m x 0.62/660L= 1.2m x 0.7m/1100L = 1.28m x 0.98m
4. Roll-on/roll-off containers: allow a minimum of 6.1m x 2.4m
5. Vehicle access: the following are dimensions for lorry types that are typically used to collect waste. Therefore gate heights and widths should not be smaller than these measurements:
 5.a Dustcart: medium capacity; length = 7.4m, height = 4m, width 3.1m
 5.b Skip lorry: length = 7m, height = 3.35m, width 3.1m.

Consideration must also be given to any other types of vehicles requiring access to this area, e.g., lorries for roll-on/roll-off containers.

Recycling bins

Individual recycling bins located at convenient locations throughout the building are necessary to maximise recycling rates.
Wst 03b Operational waste
(residential only)

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Aim

To recognise and encourage the provision of dedicated storage facilities for operational-related household waste streams and so help to avoid waste being sent to landfill or incineration.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Recycling

1. An adequate external space has been allocated to the storage of both recyclable and non-recyclable or non-compostable household waste (see Compliance notes). The space must be:
 1.a at least the minimum recommended by the appropriate local authority
 OR
 1.b where there are no recommendations from the local authority, 100L of volume for a single bedroom dwelling and a further 70L for each additional bedroom.
 1.c located on level hardstanding surface.
 1.d accessible to the occupants of the house or block of flats.

2. Adequate internal space (inside the apartments/villa), (including bins) has been allocated to the storage of recyclable household waste as follows:
 2.a At least five bins (each not smaller than 7L) have been provided for the storage of recyclable household waste.
 2.b The internal recycling bins should be located in a dedicated non obstructive position. Free-standing recycling bins placed directly on the floor or in a cupboard do not comply. The bins could be in the kitchen (close to the non-recyclable waste bin) or located adjacent to the kitchen (i.e., within 10m) e.g., in a utility room or connected garage.

One credit – Composting or anaerobic digestion

3. Provision of adequate external facilities for the storage or composting of household compostable waste. The facilities must be:
 3.a located in a dedicated position and accessible to the dwelling occupants.
 3.b accompanied by an information leaflet, delivered to each dwelling or communal kitchen. The leaflet must provide information on the following:
 3.b.i How composting or anaerobic digestion works and why it is important.
 3.b.ii The materials that can be composted or anaerobic digestion (e.g., raw vegetable peelings and fruit, shredded paper, teabags, etc.).
3.b.iii Details of the operation and management plan for any communal composting scheme or collection of organic waste for anaerobic digestion.

3.b.iv Where adequate external composting facilities are provided, troubleshooting information, e.g., what to do if the compost gets too dry or too wet.

4. Adequate internal container space (large enough to hold at least a 7L container), for storing segregated organic material (i.e., food waste), is provided in each dwelling kitchen or each communal kitchen. This can be one of the internal storage bins mentioned in criterion 2.a.

5. Where adequate external facilities have not been provided with an organic waste container, compliance can be demonstrated where an accessible local communal service for composting or anaerobic digestion, run by either a local authority or a private organization has been provided.

6. For communal facilities at least one water outlet is provided for cleaning in and around the facility.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable.</td>
</tr>
<tr>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Partially fitted: Criteria 1 and 3 are applicable only. Fully Fitted: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Extensions to existing buildings</td>
<td>Where there are external facilities within the existing building, these can be used to assess compliance. The scope of these facilities must be adequate to cater for the total volume of predicted waste from the new and existing buildings.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Community based adequate external space</td>
<td>Where the outdoor space supplied for storing non-recyclable and recyclable waste is provided by the local authority for small communities of dwellings this can still be used to demonstrate compliance.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Accessible – reasonable distance to the facilities</td>
<td>Easy to access and within a reasonable distance to facilities. The distance will depend on the collection scheme prevalent in the country or locality and should permit easy transfer of recycled waste streams to the facility. As a baseline this should normally be taken as the recommended distance set out by local authority requirements or 50m from an external entrance for houses and blocks of flats where no other requirements are in place.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Areas not yet covered by a collection scheme</td>
<td>For the purposes of criterion 2, the development can be considered as having a recycling scheme in place where a local authority or operator provides a local recycling scheme and confirms in a written statement that the recycling scheme will be provided to the development within one year of the completion date of the dwelling (or first phase of development for larger scale projects).</td>
</tr>
</tbody>
</table>
Ref | Terms | Description
--- | --- | ---
CN3.4 | Recyclable household waste | For the purpose of this issue, the space needs to be compatible with the range of recyclable collections provided by the local authority; the following materials will therefore typically be considered:
1. Paper and newspaper
2. Cardboard
3. Plastics
4. Glass
5. Metals (tins and cans)
7. Electronic waste
8. Light bulbs and compact fluorescent light sources

CN3.5 | Automated waste collection systems | These are accepted as a form of compliance as long as a management plan is in place, which can either be public (local authority) or private and requirements for separation are met.

CN3.6 | Adequate external composting facilities | These must consist of an external storage bin for compostable waste or a composting container.

The composting container must be specifically designed for composting and sited according to the manufacturer’s instructions. Such containers should not be sited in close proximity of windows, doors, or ventilation intakes for habitable areas within the dwelling or surrounding dwellings. No requirements are set on the type of container or storage capacity required as this will be determined by the end user and predicted volumes of organic compostable waste. The assessor should be satisfied that, within reason, the installation is adequate for the size of the development, bearing in mind the likely quantity of organic waste that will be produced by the development.

CN3.7 | Community composting schemes | Existing and proposed community schemes are acceptable under this issue as long as they comply with all the specifications in the technical guide.

The community scheme composting facility should be easily accessed from all dwellings served by the scheme, i.e. the householder would normally deliver the waste by foot.

It is acceptable for the bin to be beside other recycling bins in a communal collection site as long as it is clearly identifiable as being connected to a licensed community scheme.

The distance between the site entrance and the communal or community containers must not usually exceed 50m (if national regulations are in place and are more stringent, compliance with these is required).

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Drawings or a copy of the specification. Calculations to justify the size of the space allocated for external waste storage. Letters or a contract from the local authority or a private organisation where appropriate. Evidence for the existence of a community based adequate external space, set up and managed by the local authority, where applicable.</td>
<td>As design stage. As-built drawings or specifications (where applicable) OR written confirmation that the development has been constructed in accordance with the design stage drawings and specifications.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Automated waste collection system

Some companies now offer a fully automated underground system, for the collection, sort and transport of waste. It allows for waste separation at the source, for different types of waste and from multiple locations, with enhanced hygiene, occupational health and safety standards. It also reduces the use of waste transport by lorries, reducing nuisance and CO₂ emissions, from fossil fuel consumption.

Communal or community composting

Communal or community composting is where a group of people share a composting system. The raw materials are provided by all who take part in the scheme, and the compost is then used in the community, either by individuals in their own gardens, or for use on larger projects within the local environment.

The distance between the site entrance and the communal or community containers must not usually exceed 50m (or national regulations if these are more onerous).

The composting scheme must be compliant with all applicable legislation.

Composting

Composting is a natural process which converts organic waste into an earth-like mass by means of bacteria and micro-organisms. The composting process is also supported by larvae, wood lice, beetles, worms and other such creatures.

Dedicated non-obstructive position

Ideally this would be in an easily accessible cupboard under the sink or any other cupboard in the kitchen, next to the storage or likely area for storing non-recyclable waste, where practical. Where a kitchen cupboard location is not possible the bins can be located near to the kitchen, in a utility room or connected garage for example.

Local authority collection scheme

In these schemes the local authority is responsible for regular collection of household waste from the dwelling or its locality. This includes the collection of residual waste (waste not intended for recycling or composting) and recyclable household waste.

Private recycling scheme operator

A private recycling scheme operator can be appointed to collect recyclable materials where a local authority collection scheme is not in operation or where a landlord or occupier elects to go private, e.g. in some apartments.
Other information

None.
Wst 04 Speculative finishes
(offices and multiple dwellings only)

Number of credits available

<table>
<thead>
<tr>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To encourage the specification and fitting of finishes selected by the building occupant and therefore avoid unnecessary waste of materials.

Assessment criteria

The following is required to demonstrate compliance:

One credit – Speculative finishes

1. For tenanted office areas (where the future occupant is not known), prior to full fit-out works, carpets, other floor finishes and ceiling finishes have been installed in a show area only.
2. In an office building developed for a specific occupant, that occupant has selected (or agreed to) the specified floor and ceiling finishes.
3. For multiple dwellings (where the future occupant is not known), floor, kitchen and bathroom finishes have been installed in a show area only.
4. In a residential building (where the future occupants are known), future occupants have selected (or agreed to) at least three of the specified floor, kitchen and bathroom finishes (see Relevant definitions).

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options – This issue is not applicable.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria</td>
<td>Both options: This issue is not applicable.</td>
</tr>
<tr>
<td>CN2.1</td>
<td>Applicable assessment criteria – Single dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2.2</td>
<td>Occupant not involved</td>
<td>For dwellings where the occupant has no involvement with choosing the finishes, this credit cannot be awarded.</td>
</tr>
</tbody>
</table>
Methodology
None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Design drawings or relevant section or clauses of the building specification or contract or a letter from the client, project team or building user where the future occupant is known.</td>
<td>As design stage or the BREEAM-SE Assessor’s site inspection report and photographic evidence.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Residential kitchen and bathroom finishes

1. Kitchen units (cabinets and counter tops)
2. Kitchen appliances
3. Kitchen wall finishes
4. Bathroom suites (bath, shower, basin, WC)
5. Bathroom wall finishes.

Show area

- Office buildings: either a floor plate or an individual office. However, to award this credit it must be less than 25% of the net lettable floor area.
- Residential buildings: a show home or apartment.

Other information

None.
Wst 05 Adaptation to climate change

Number of points available

<table>
<thead>
<tr>
<th>Number of points available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To recognize and encourage measures taken to mitigate the impact of extreme weather conditions arising from climate change over the lifespan of the building.

Assessment criteria

The following is required to demonstrate compliance with the criteria:

One credit - Adaptation to climate change

1. A climate risk and vulnerability analysis has been conducted in the project. The analysis is performed by the end of Concept Design stage (tidigt Programhandlingsskede) (or equivalent) in accordance with the following method:
 1.a Assessment of the physical climate risks from Table 45 that may affect the building during its projected life cycle
 1.b Assessment of how significant the physical climate risks are for the building.
 1.c Development of proposals for adaptation solutions that can reduce the physical climate risks identified

Exemplary credit – Measures for adaptation to climate change

2. In and around the building, the adaptation solutions identified have been applied, which has resulted in a substantial reduction in the physical climate risks.

3. The adaptation solutions must fulfill the following:
 3.a The adaptation solutions do not adversely affect adaptation efforts or the level of resistance to physical climate risks of other people, of nature, of cultural heritage, of assets, buildings or other economic activities
 3.b They favor nature-based solutions or rely on blue or green infrastructure to the extent possible
 3.c They are consistent with local, sectoral, regional or national adaptation plans and adaptation strategies
 3.d The adaptation solutions are monitored and measured continuously during the service life of the solution and remedial actions are considered where those indicators are not met
 3.e The adaptation solution must not violate any Do No Significant Harm (DNSH) criteria in the EU taxonomy’s regulations.

Checklists and tables

Table 45
Table 45: Physical climate risks

<table>
<thead>
<tr>
<th>Temperature related</th>
<th>Wind related</th>
<th>Water related</th>
<th>Solid mass related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changing temperature (air, freshwater, marine water)</td>
<td>Changing wind patterns</td>
<td>Changing precipitation patterns and precipitation types (rain, hail, snow/ice)</td>
<td>Coastal erosion</td>
</tr>
<tr>
<td>Heat stress</td>
<td></td>
<td>Variations in precipitation or hydrology</td>
<td>Soil degradation</td>
</tr>
<tr>
<td>Temperature variability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thawing permafrost</td>
<td></td>
<td>Saline intrusion</td>
<td>Solifluction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sea level rise</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water stress</td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat wave</td>
<td>Cyclone, hurricane, typhoon</td>
<td>Drought</td>
<td>Avalanche</td>
</tr>
<tr>
<td>Cold wave/frost</td>
<td>Storm (including blizzards, dust and sandstorms)</td>
<td>Heavy precipitation (rain, hail, snow/ice)</td>
<td>Landslide</td>
</tr>
<tr>
<td>Wildfire</td>
<td>Tornado</td>
<td>Flooding (coastal water, fluvial, pluvial, groundwater)</td>
<td>Subsidence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glacial lake outburst</td>
<td></td>
</tr>
</tbody>
</table>

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria that are relevant to the building type and the building’s function shall be applied.</td>
</tr>
<tr>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – single and multiple dwellings</td>
<td>Both options: All criteria that are relevant to the building type and the building’s function shall be applied.</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 3</td>
<td>Climate risk and vulnerability analysis – time period</td>
<td>Climate risk and vulnerability analysis shall be carried out using advanced climate projections with the highest available resolution for a range of existing future scenarios of at least 10–50 years.</td>
</tr>
<tr>
<td>CN 3.1</td>
<td>Climate risk and vulnerability analysis – data</td>
<td>The climate risk and vulnerability analysis is based on climate projections and an impact assessment. This analysis is based on best practices and available guidelines and takes into account the latest scientific findings for risk and vulnerability analyses as well as related methods in accordance with the latest reports from the IPCC, peer-reviewed scientific publications, and open source or paid models.</td>
</tr>
<tr>
<td>CN 3.2</td>
<td>Data for analysis</td>
<td>If the first (Thermal modelling) and second (Adaptability) scores under Hea04 and/or the first (Flood risk) score under Pol03 have been determined for the project, those analyses can form the basis for the analysis in this indicator.</td>
</tr>
<tr>
<td>CN 3.3</td>
<td>Existing physical adaptation solutions</td>
<td>If the area where the building is erected has existing physical adaptation solutions, the project shall produce a plan for how these solutions will be developed in order to reduce the physical climate risks. The plan may extend over a maximum of 5 years.</td>
</tr>
</tbody>
</table>
Methodology

None

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A copy of the climate risk and vulnerability analysis</td>
<td>Same as in the design stage. The BREEAM-SE assessor’s inspection report and photo evidence.</td>
</tr>
<tr>
<td>2–3</td>
<td>Information about what measures have been taken</td>
<td>Same as in the design stage. The BREEAM-SE assessor’s inspection report and photo evidence.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

IPCC

Intergovernmental Panel on Climate Change. The UN’s agencies for summarizing and assessing science related to global warming. The panel regularly compiles research reports on global warming, consequences, vulnerabilities and possible solutions.

Climate projections

Climate projections are simulations of the Earth’s climate for the coming decades. Climate projections are assumed scenarios for the concentration of greenhouse gases, aerosols and other factors that affect the balance of the earth.

Other information

None
Wst 06 Functional adaptability

Number of credits available	Minimum standards
1 | No

Aim

To recognise and encourage building constructions and building techniques that support circularity, the possibility of disassembly, and flexibility throughout the service life of the building.

Assessment criteria

The following is required to demonstrate compliance with the criteria:

One credit - Functional adaptability

1. The principles, requirements and guidance relevant to the building in SS-ISO 20887 have been applied in the project. Current and potential functions, lifetimes, services lives, regulations, policies and other requirements, including the developer’s requirements, shall be determined by the completion of the concept design stage (tidiga programhandlingsskedet).

2. The three principles of design for adaptability and the seven principles of design for disassembly laid out in SS-ISO 20887 are to be considered for each major construction/design element, all major components and the construction production as a whole. The principles form the basis for determining how well the design works for adaptation to future areas of use and for material recycling or reuse.

3. A manual for disassembly and adaptability shall be produced, and the information shall be included in the management process. The manual shall contain information from the design and contain information about:
 a. Methods of disassembly
 b. Material composition
 c. Recycling
 d. Adaptable design features

Checklists and tables

None

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both alternatives: All criteria that are relevant to the building type and the building’s function shall be applied.</td>
</tr>
</tbody>
</table>

Shell and core (non-residential and residential institutions only)

Residential – Partially fitted and fully fitted
General

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – single and multiple dwellings</td>
<td>Both alternatives: All criteria that are relevant to the building type and the building’s function shall be applied.</td>
</tr>
</tbody>
</table>

CN 3

Determination of requirements

The following points shall be taken into account in the preparation of requirements in accordance with criterion 1.

1. The physical context of the building site
2. The cultural context of the building site
3. Owner
4. Use type
5. The building’s typology
6. Construction technology
7. Construction materials
8. Size of plot and building
9. Projected service life
10. Goals for the environment, social aspects as well as economy
11. Objectives for construction, function and operation
12. Climate change
13. Schedule for construction
14. Environmental factors that can affect the building’s sustainability

For more information see ISO 20887 chapter 4.3.1.

CN 3.1

Analysis levels for design principles

The principles to be developed in criterion 2 shall be studied on the basis of the following five levels of analysis:

- a. The building as a whole system
 - b. Major structural parts
 - c. Components or composite products
 - d. Parts of components
 - e. Choice of materials

CN 3.2

Design for adaptability

The three principles of design for adaptability are:

1. Flexibility
2. Possibilities for changes
3. Expansion possibilities

Adaptability shall be examined according to two categories:

1. Specific – for known/expected changes
2. General – for unknown potential changes

Adaptations can also be made in two different ways:

1. Sequential – occur over time and are often irreversible
2. In Parallel – the ability to change several times, e.g. recurring tenant adaptations

For more information see ISO 20887 chapter 5.2.
The seven principles of disassembly are:
1. Ease of access to components and services
2. Independence
3. Avoidance of unnecessary treatments and finishes
4. A business model that supports reuse (circular economy)
5. Simplicity
6. Standardization
7. Disassembly safety

For more information see ISO 20887 chapter 5.3.

Methodology
None

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>The result of the work on functional adaptability</td>
<td>As design stage.</td>
</tr>
<tr>
<td>3</td>
<td>Manual for disassembly and adaptability including</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drawings and details with plan for disassembly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Information about disassembly sequence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Information about materials, manufacturers and warranties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Procedures for how the material is to be used, managed and updated during the building's service life.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Components and products have directly available information about their content, size and strength. Also information on warranties, maintenance and disassembly (E.g. via barcode or RFID tagging)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As design stage.</td>
<td></td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Major construction elements
Same definition as in Mat01 criteria 2 and table 35.

Major components
Same definition as in Mat01 criteria 2 and table 35.
Other information

None
12.0 Land use and ecology

Summary

This category encourages sustainable land use, habitat protection and creation, and improvement of long term biodiversity for the building’s site and surrounding land. Issues in this section relate to the reuse of brownfield sites or those of low ecological value, mitigation and enhancement of ecology and long term biodiversity management.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE 01 Site selection</td>
<td>3</td>
<td>To encourage the use of previously occupied or contaminated land and avoid land which has not been previously disturbed.</td>
</tr>
<tr>
<td>LE 02 Ecological value of site and protection of ecological features</td>
<td>2</td>
<td>To encourage development on land that already has limited value to wildlife and to protect existing ecological features from substantial damage during site preparation and completion of construction works.</td>
</tr>
<tr>
<td>LE 04 Enhancing site ecology</td>
<td>3</td>
<td>To encourage actions taken to enhance the ecological value of the site as a result of development.</td>
</tr>
<tr>
<td>LE 05 Long term impact on biodiversity</td>
<td>2</td>
<td>To minimise the long term impact of the development on the site and the surrounding area’s biodiversity.</td>
</tr>
</tbody>
</table>
LE 01 Site selection

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To encourage the use of previously occupied or contaminated land and avoid land which has not been previously disturbed.

Assessment criteria

This issue is split into two parts:

- Previously occupied land (2 credits)
- Contaminated land (1 credit)

The following is required to demonstrate compliance:

Up to two credits – Previously occupied land

1. A percentage of the proposed development’s footprint is on an area of land which has previously been occupied by industrial, commercial or domestic buildings or fixed surface infrastructure.

 Table 46: Percentage of proposed development’s footprint on previously developed land

<table>
<thead>
<tr>
<th>Percentage of the proposed development’s footprint on previously developed land</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>1</td>
</tr>
<tr>
<td>95%</td>
<td>2</td>
</tr>
</tbody>
</table>

One credit – Contaminated land

2. The site is deemed to be significantly contaminated, i.e., could not be developed or built to the proposed end use without remediation. This can either be confirmed by a contaminated-land professional or identified using Checklist A7.

3. The more onerous of these criteria have been adopted:

 3.a Nationally recognised guidance for site investigation, risk assessment and appraisal of contaminated land as set out in the regulations or a nationally recognised code of practice

 OR

 3.b A robust site investigation, risk assessment and appraisal have been undertaken, in accordance with the requirements of Checklist A7 (as a minimum).

4. The client or principal contractor confirms that remediation of the site will be carried out in accordance with the recommended remediation strategy and its implementation plan (defined in Checklist A7) as set out by the contaminated-land professional and any relevant national or other legislation.
Checklists and tables

Checklist A7 and Table 46.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Temporary works. See criterion Table 46.</td>
<td>Undeveloped areas of the site to be used for temporary works (e.g. temporary offices or parking, material or machinery storage) must be considered as development on undeveloped land and therefore included in the calculations unless they have been defined as 'land of low ecological value' in accordance with BREEAM-SE issue LE 02 Ecological value of site and protection of ecological features.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Infill development. See criterion Table 46.</td>
<td>New buildings developed within the boundary of existing sites do not automatically comply with the reuse of land criteria. The land on which at least 75% or 95% of the new building will be sited must meet the definition of previously developed.</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Prior decontamination. See criteria 2 and 3.</td>
<td>The credit for use of contaminated land can only be awarded where remediation has taken place to enable development of the site for the assessed building, or a larger phased development that includes the assessed building. The credit is not achievable for instances where historical remediation and development of the site has occurred outside the scope of the current development proposals.</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Large sites split into smaller plots. See criteria 2 and 3.</td>
<td>Where contamination of a large site has been remediated and has then been packaged up into smaller plots of land for individual buildings (possibly as part of a phased development strategy), the credit can be awarded regardless of the plot location of the assessed building within the wider development plan. This is on the condition that the site could not have been developed without remediation work taking place.</td>
</tr>
<tr>
<td>CN3.4</td>
<td>Health and safety related decontamination. See criteria 2 and 3.</td>
<td>Contaminated land that has been decontaminated solely for health and safety reasons (rather than for the specific purpose of redevelopment) does not comply.</td>
</tr>
<tr>
<td>CN3.5</td>
<td>Asbestos. See criteria 2 and 3.</td>
<td>Where the only remediation required is the removal of asbestos within an existing building fabric, the site cannot be classified as contaminated land. However, where asbestos is found to be present in the ground this will be classed as contamination for the purposes of assessing this issue.</td>
</tr>
<tr>
<td>CN3.6</td>
<td>Checklist A7</td>
<td>Checklist A7 indicates the likelihood of significant contamination problems on a site for the purposes of a BREEAM-SE assessment. It also sets out the scope of any preliminary investigation, site investigation and remedial strategy. It does not seek to evaluate types, levels or risks of contamination present on the site.</td>
</tr>
<tr>
<td>CN3.7</td>
<td>National Relevant methods, standards and environmental quality rules concerning contaminated land</td>
<td>The Swedish Environmental Protection Agency (Naturvårdsverket) provides guidelines and assessment criteria for contaminated land.</td>
</tr>
<tr>
<td>Ref</td>
<td>Terms</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>CN 3.8</td>
<td>Hard-landscaped areas with small pockets of soft landscaping</td>
<td>Car parks and other hard-landscaped areas often incorporate small pockets of soft landscaping. Where these are integral to the hard landscaping and constitute a small proportion of the total area, these areas can be considered as part of the fixed surface infrastructure. These are included in the definition of previously developed land including fixed surface infrastructure.</td>
</tr>
<tr>
<td>CN 3.9</td>
<td>Contaminated-land professional</td>
<td>It is acceptable that a competent contaminated land specialist has not performed the tasks that are within the expert's role and commitment, provided that it is clear that he has reviewed, approved, and taken full responsibility for the method and content of the investigation, assessment, and report. The expert must have met the competence requirements in the criteria before the task begins.</td>
</tr>
</tbody>
</table>

Building specific

| CN4 | Education (schools only). Playing fields. See criterion Table 46. | Development of a playing field within the construction zone can be counted as development on previously occupied land only if an equivalent area of playing field is reinstated within one year of the completed construction works; and where such reinstatement will not encroach on land of high ecological value as defined in BREEAM-SE issue LE 02 Ecological value of site and protection of ecological features |

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design drawings (including existing site plan, report or site photographs.)</td>
<td>BREEAM-SE Assessor's site inspection report and photographic evidence or as-built drawings. Where alteration has occurred, the percentage must be recalculated using as-built plans.</td>
</tr>
<tr>
<td>2–4</td>
<td>A completed copy of the relevant sections of Checklist A7. Existing site plans showing contaminated areas to be remediated in relation to any proposed development. A copy of the contaminated-land professional's report. A letter from the principal contractor or remediation contractor confirming: 1. The remediation strategy for the site 2. Summary details of the implementation plan. If a contractor has not yet been appointed, a letter from the client or their representative confirming that the appointed contractor will undertake necessary remediation works to mitigate the risks identified in the report.</td>
<td>As design stage with information for the as-built situation.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Construction zone
For the purpose of this BREEAM-SE issue the construction zone is defined as any land on the site which is being developed (and therefore disturbed) for buildings, hardstanding, soft landscape, site access plus a 3m wide zone measured outward from the boundary. It also includes any areas used for temporary site storage and buildings. If it is not known exactly where buildings, hardstanding, site access and temporary storage will be located it must be assumed that the construction zone is the entire site.

Contaminated land or site
Land that could not be legally or safely developed or built on to the proposed end use without the remediation of contamination. Contamination is defined as any substance or agent in, or on the ground within the construction zone, which presents an unacceptable risk to human health, property or the environment. For the purposes of BREEAM-SE, substances or agents that could present unacceptable contamination risks are defined as those that act as a barrier to the development of land, which could include certain plant species such as, but not limited to, Japanese knotweed and giant hogweed. See NOBANIS - European Network on Invasive Alien Species. Updates for Sweden is done by Swedish EPA.

Contaminated-land professional
An individual that holds a degree or equivalent qualification in chemistry, environmental science or management, earth sciences, civil engineering or a related subject, and has a minimum of three years relevant experience (within the last five years) in site investigation, risk assessment and appraisal. Such experience must clearly demonstrate a practical knowledge of site investigation methodologies and understanding of remediation techniques and national legislation on the subject; as well as acting in an advisory capacity to provide recommendations for remediation.

Previously occupied land
For the purposes of this issue, BREEAM-SE defines previously occupied land as that which is or was occupied by a permanent structure, including land covered by aggregates and any associated fixed surface infrastructure (the definition is based on the British National Planning Policy Framework definition of previously developed land). The definition excludes:

1. land that is or has been occupied by agricultural or forestry buildings.
2. land that has been developed for minerals extraction or waste disposal by landfill purposes where provision for restoration has been made through development control procedures.
3. land in built-up areas such as parks, recreation grounds and allotments which, although they may feature paths, pavilions and other buildings, have not been previously occupied.
4. land that was previously occupied but where the remains of the permanent structure or fixed surface structure have blended into the landscape in the process of time (to the extent that it can reasonably be considered as part of the natural surroundings).
Proposed development

Any development (building, hard landscaping, car park and access roads) that falls within the boundary of the assessed site.

Remediation

Activity undertaken to prevent, minimise, remedy or mitigate the risk caused by contaminated land to human health or the environment.

Other information

None.
LE 02 Ecological value of site and protection of ecological features

Number of credits available	Minimum standards
2 | No

Aim
To encourage development on land that already has limited value to wildlife and to protect existing ecological features from substantial damage during site preparation and completion of construction works.

Assessment criteria
This issue is split into two parts:

- Ecological value of site (1 credit)
- Protection of ecological features (1 credit)

The following is required to demonstrate compliance:

Prerequisite – Environmental Impact Assessment (EIA)
An Environmental Impact Assessment (EIA) where required according to the Planning and Building Act shall be demonstrated. Where an EIA has been carried out, the required mitigation and compensation measures for protecting the environment are implemented.

One credit – Ecological value of site
1. Land within the assessment zone is defined as ‘land of low ecological value’ using either:
 1.a the BREEAM-SE checklist (Table 47) for defining land of low ecological value (see Checklists and tables)
 OR
 1.b A suitably qualified ecologist (SQE) who has identified the land as being of ‘low ecological value’ within an ecological assessment report, based on a site survey. See the BREEAM-SE definition of a Suitably qualified ecologist (SQE).

One credit – Protection of ecological features
2. All existing features of ecological value (see CN3) within the assessment zone and site boundary area are adequately protected from damage during clearance, site preparation and construction activities (see CN3).
3. In all cases, the principal contractor is required to construct ecological protection recommended by the SQE, prior to any preliminary site construction or preparation works (e.g., clearing of the site or erection of temporary site facilities).
Checklists and tables

Table 47.

BREEAM-SE checklist for defining land of low ecological value

If the answer to all questions in the checklist is ‘no’, the land can be defined as having a low ecological value and the credit awarded. Should any of the questions be answered ‘yes’, the credit can only be awarded on confirmation from a SQE that the site is of low ecological value.

The checklist should be completed by either the BREEAM-SE Assessor, using appropriate evidence submitted by the design team or completed by the design team and submitted to the assessor along with appropriate supporting evidence. The answers to the checklist must be based on an evaluation of the site prior to any site clearance or construction activities (refer to LE 02 Ecological value of site and protection of ecological features for further details).

Table 47: BREEAM-SE checklist for defining land of low ecological value

<table>
<thead>
<tr>
<th>ID</th>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Have any of the following local organisations identified possible ecological value on the site (all relevant bodies must be contacted before responding to the question)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. The appropriate statutory body*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Nature or conservation groups.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>Is the development within 2 km of a clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to achieve the long term conservation of nature with associated ecosystem services (e.g. Ramsar site)? The following sources of information are not exhaustive but can be used to check local land use</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Protected Planet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Appropriate statutory body websites*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Maps that show specific sites and provide information on local policies relating to that site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Is the development within 500m of a designated area? The following sources of information are not exhaustive but can be used to check local land use:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Protected Planet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Appropriate statutory body websites*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Maps that show specific sites and provide information on local policies relating to that site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>Are any of the following habitats present on, or within 100m of the construction zone? The following list is not exhaustive, but provides guidance on the type of habitat BREEAM-SE defines as having ecological value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Woodland (e.g. coniferous forest, broad-leaved deciduous forest, riparian forests etc.) **</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Water courses (e.g. rivers, streams, creeks etc.) ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Wetlands (e.g. mires, marshes, wet grasslands, near-shore marine areas etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Grassland (e.g. meadows, pastures, heathlands, bogs, moss etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Dwarf shrub habitat (e.g. heathlands, moorlands, scrub forests etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Any other habitats considered to have ecological value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q5 Are any of the following features present within or on the boundary of the construction zone?

1. Mature trees (> 400 mm trunk diameter) or semi-mature trees (200 – 400 mm trunk diameter)
2. Thinner trees (<200 mm trunk diameter) with valuable structures, such as hollow trees, traces of burned forest, pollards etc. which possess high ecological values. (This category only includes naturally established domestic trees.)
3. Mature hedgerow or mature planting marking a boundary (field hedgerows over 1m tall and 0.5m wide) ****
4. Existing buildings (occupied or derelict) that may provide shelter for wildlife.

Q6 The new construction is not built on one of the following:

1. Arable land and crop land with a moderate to high level of soil fertility and below ground biodiversity as referred to in the EU LUCAS survey.
2. Greenfield land of recognised high biodiversity value and land that serves as habitat of endangered species (flora and fauna) listed on the European Red List or the IUCN (International Union for Conservation of Nature and Natural Resources) Red List.
3. Land matching the definition of forest as set out in national law used in the national greenhouse gas inventory, or where not available, is in accordance with the FAO (Food and Agriculture Organization of the United Nations) definition of forest, i.e. land spanning more than 0.5 hectares with trees higher than five meters and a canopy cover of more than 10 %, or trees able to reach those thresholds in situ. It does not include land that is predominantly under agricultural or urban land use.

Notes:

* Appropriate statutory bodies include:
 - The county administrative boards (länsstyrelserna). Please see the county administrative boards’ GIS-database
 - Municipalities. Please see refer to the relevant municipality’s comprehensive plan and plans for green structures.
 - The Swedish Forest Agency (Skogsstyrelsen)
 - Red-listed species are listed at Arportalen

** Woodland is defined as ‘having over 25% canopy cover of trees and shrubs, over a metre high’.

*** Broad habitats of rivers and streams are defined as running watercourses ranging from small headwater streams to large rivers. This broad habitat, along with wetlands, includes the open water itself and the vegetation along the water’s edge.

**** A hedge is defined as ‘a line of woody vegetation that has been subject to management so that trees no longer take their natural shape.’

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>
General

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3</td>
<td>Protecting features of ecological value</td>
<td>Where the following features of ecological value exist on site and are being retained they should be protected as detailed below:</td>
</tr>
</tbody>
</table>
| | | 1. Trees of significant ecological value are protected by barriers. Barriers must prohibit construction works in the area between itself and the tree trunk. Minimum distance between tree trunk and barriers must be either the distance of branch spread or half tree height, whichever is the greater. Trees are protected from direct impact and from severance or asphyxiation of the roots. Invasive tree species (appearing on NOBANIS) should generally be removed.
Trees of ecological value are defined by one or more of the following:
• Trees with a trunk diameter of at least 400 mm measured at 1.3 m above ground.
• Trees which are visibly hollow (the inner hollow room is larger than the opening, and the opening is larger than 5 cm) and with a trunk diameter of at least 300 mm measured at 1.3 m above ground.
• Trees which are habitat for species that are on the national red list for species
• Trees with larger amounts of dead wood (standing or laying)
• Trees with a long term function as a nesting place
• Trees that for other reasons have regional or national value for biodiversity
| | | 2. Coastal developments, watercourses, wetland areas, areas of freshwater and known groundwater wells should be protected by cut-off ditches and site drainage to prevent run-off to minimise risk of pollution, silting or erosion.
3. Other ecological features and natural areas requiring protection must either have barriers erected and be protected, or, when remote from site works or storage areas, be protected with a prohibition of construction activity in their vicinity.
Note: Where a tree is deemed to create a significant danger to the public or occupants by a statutory body or qualified arboriculturalist, then that feature may be exempt from the ‘protection of ecological features’ requirement of this issue. |
| CN3.1 | No features of ecological value | Where there are no features of ecological value, the credit for the protection of ecological features can only be awarded if the assessment zone is defined as ‘land of low ecological value’. |
| CN3.2 | Use of a SQE. | Where a SQE is employed and has, using their professional judgment, defined the site as land of low ecological value, this assessment or judgment overrides any assessment determined using the BREEAM-SE checklist for defining land of low ecological value. The SQE must base their findings on data collected from a site visit conducted at appropriate times of the year, when different plant and animal species are evident. The content of the ecology report is to be representative of the existing site’s ecology prior to the commencement of initial site preparation works (i.e. before construction). Where the ecologist has not visited the site at the appropriate times the credit cannot be awarded (except in the circumstances indicated below in CN3.5). The SQE must use Swedish standard for Biodiversity survey (SS 199000:2014). |
| CN3.3 | Features of little or no ecological value | If a SQE has confirmed that a feature present on the site has little or no ecological value (see Relevant definitions), or where a tree is deemed to create a significant danger to the public or occupants by a statutory body or qualified arboriculturalist, then that feature may be exempt from the ‘protection of ecological features’ requirement of this issue. |
| CN3.4 | Prior removal of features of ecological value | If features of ecological value have been removed as part of the site clearance activities then the development cannot achieve the credits, even if they are to be replaced as part of a new soft landscape strategy. |

Note: Where a tree is deemed to create a significant danger to the public or occupants by a statutory body or qualified arboriculturalist, then that feature may be exempt from the ‘protection of ecological features’ requirement of this issue.
Ref	Terms	Description
CN3.5 | Site clearance prior to purchase of the site. See criterion 1. | For sites cleared prior to purchase of the site and less than five years before assessment, a SQE should estimate the site’s ecological value immediately prior to clearance using available desktop information (including aerial photography) and the landscape type or area surrounding the site. Where it is not possible for the ecologists to determine that the site was of low ecological value prior to the site clearance then the credits must be withheld, i.e. where there is no evidence and therefore justification for awarding the credits. For sites cleared more than five years ago, the ecological value of the site is to be based on the current situation on the basis that within five years, ecological features would have started to re-establish themselves and therefore act as an indicator of the site’s ecological value.
CN3.6 | Verification of a report written by an ecologist not meeting the BREEAM-SE SQE criteria. See criterion 1.b. | Where a SQE is verifying an ecology report produced by another ecologist who does not meet the SQE criteria, they must, as a minimum, review the report and confirm in writing that they have found it to:
1. Represent sound industry practice
2. Report and recommend correctly, truthfully and objectively
3. Be appropriate given the local site conditions and scope of works proposed
4. Avoid invalid, biased and exaggerated statements.
Additionally, written confirmation from the third party verifier that they comply with the definition of a SQE is required.

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| All | A completed copy of Table 47 signed and dated by the client or a design team member AND EITHER Plans, site photographs and specifications confirming presence, or otherwise, of ecological features and the protection measures specified OR Ecologist’s report highlighting information required in accordance with Guidance Note 13 – Relating ecologist’s report to BREEAM-SE. GN 13 is available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs. | As design stage BREEAM-SE Assessor’s site inspection report and photographic evidence OR Ecologist’s report confirming:
1. The boundary of the site and the construction zone has not been altered
2. Where applicable, all existing ecological features still remain.

Additional information

Relevant definitions

Appropriate statutory body

This refers to the statutory or legal organisation, or entity, whose duty it is to carry out the planning approval function for the development area.
Assessment zone

For the purpose of this BREEAM-SE issue the assessment zone is defined as any land on the site which is being developed (and therefore disturbed) for buildings, hardstanding, soft landscaping, site access, plus a 3 m wide zone measured outward from the boundary around these areas irrespective of site boundary. It also includes any areas used for temporary site storage and buildings. If it is not known exactly where buildings, hardstanding, site access and temporary storage will be located it must be assumed that the assessment zone is the entire site.

Ecology related subject

Depending on the ecological content (minimum 60%), the following degrees might be considered relevant: Ecology, Biological Sciences, Zoology, Botany, Countryside Management, Environmental Sciences, Marine and Freshwater Management, Earth Sciences, Agriculture, Forestry, Geography, Landscape Management.

Suitably qualified ecologist (SQE)

An individual achieving all the following items can be considered to be ‘suitably qualified’ for the purposes of compliance with BREEAM-SE:

1. Holds a degree or equivalent qualification in ecology or a related subject comprising a significant ecology component.

2. Is a practising ecologist, with a minimum of three years relevant experience (within the last five years). Such experience must clearly demonstrate a practical understanding of factors affecting ecology in relation to construction and the built environment; including, acting in an advisory capacity to provide recommendations for ecological protection, enhancement and mitigation measures. The relevant experience must relate to the country that the assessment is being carried out in.

Other information

Very often there is the potential for a site to increase its biodiversity value through appropriate design and management, regardless of whether enhancing biodiversity is required to gain planning consent. This BREEAM-SE assessment issue provides the opportunity to reward those projects that contribute to protecting and enhancing biodiversity, improve living environments and meet environmental objectives.

The SQE’s recommendations may have an impact on specifications worked up by other design team members, such as landscape architects or drainage engineers. BREEAM-SE recommends that collaborative input between the ecologist and relevant professionals is sought from the concept stage of the development to highlight opportunities and constraints and allow effective integration of these aspects into the ecologist’s recommendations.

The World Database on Protected Areas (WDPA) contains information from various organisations such as national governments, non-governmental organisations, academic institutions, international biodiversity convention secretariats, etc. The data and maps can be used for environmental impact analysis and private sector decision-making when areas of ecological value could be impacted.
Relating ecology reports to BREEAM-SE

Guidance on relating ecology reports to BREEAM-SE can be found in Guidance Note 13, available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.
LE 04 Enhancing site ecology

Aim

To encourage actions taken to enhance the ecological value of the site as result of development.

Assessment criteria

This issue is split into two parts:

- Ecologist’s report and recommendations (1 credit)
- Increase in ecological value (2 credits)

The following is required to demonstrate compliance:

One credit – Ecologist’s report and recommendations

1. A SQE\(^1\) has been appointed by the client or their project representative no later than the conclusion of the design brief, i.e., the ecologist is appointed at the beginning of Concept Design stage (tidigt programhandlingsskede).
2. The SQE has provided an ecology report with appropriate ecological recommendations (see Relevant definitions) for the enhancement of the site’s ecology at Concept Design stage (tidigt programhandlingsskede). The report is based on a site visit or survey by the SQE1 (see CN3.1).
3. At least 50% of the recommendations within the ecology report for enhancement of site ecology have been, or will be, implemented in the final design and build.

Up to two credits – Increase in ecological value

4. Criteria 1 and 2 are achieved.
5. A percentage of the recommendations within the ecology report for enhancement of site ecology have been, or will be, implemented in the final design and build.

Table 48: Percentage of recommendations within ecology report implemented (see Methodology)

<table>
<thead>
<tr>
<th>Percentage of ecology report recommendations implemented</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>1</td>
</tr>
<tr>
<td>95%</td>
<td>2</td>
</tr>
</tbody>
</table>

Checklists and tables

Table 48.

\(^{1}\) Suitably qualified ecologist
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>Residential – Partially fitted and fully fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Early stage involvement from the SQE.</td>
<td>The role of the SQE during the Preparation and Brief stage (Förstudie) will be</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Timing of ecologist's survey and report.</td>
<td>The SQE must carry out site surveys of existing site ecology, on which their</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Guidance for ecologists and assessors</td>
<td>Guidance on relating ecology reports to BREEAM-SE can be found in Guidance</td>
</tr>
<tr>
<td>CN3.3</td>
<td>Infill construction on existing sites with limited space for ecological</td>
<td>Where it is not possible to implement ecological enhancements within the</td>
</tr>
<tr>
<td>CN 3.5</td>
<td>Verification of a report written by an ecologist not meeting the BREEAM-SE SQE criteria.</td>
<td>Where a SQE is verifying an ecology report produced by another ecologist who</td>
</tr>
</tbody>
</table>
Ref | Terms | Description
--- | --- | ---
CN 3.6 | Land use and ecology issues non dependency | The various issues within the Landscape and ecology category are independent of each other. This means that assessments located on land that has not been previously developed with a high ecological value, and thus do not have the opportunity to receive credits within LE 01 and first credit of LE 02, have the opportunity to achieve credits in LE 04 and LE 05. For both issues all credits are available and there is no requirement for a site with low ecological value LE 04 aims to provide an improvement in the site’s ecological value compared to if the measures are not carried out despite the original ecological value. LE 05 focuses on how the work during the contract affects the biological diversity of the site and the surrounding area and is thus still relevant.
CN 3.7 | Off-site ecological enhancement | Projects sharing land areas with other buildings may assess ecological enhancement for the entire area and use as an assessment for the actual building. However, the ecological enhancements must be performed within a reasonable time from the performance of the ecological survey and the area must be a part of the same development and ownership. The ecologist must also confirm that the suggested measures are more appropriate and more effective than can be done solely within the red line boundary. The property owner must take a long-term responsibility for the maintenance of the land.

Methodology

In the ecology report the relative importance of the recommendations should be qualified as a percentage (e.g., recommendation 1: 50 %, 2-6: 10 % each). The percentage of recommendations implemented should be based on these percentages (see criteria 3 and table 48).

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>The SQE’s report highlighting information required in Guidance note 13 or a copy of Guidance note 13 completed by the ecologist. Design drawings including proposed and existing (pre- development) site plan or survey. Written confirmation from the client or design team confirming how the ecologist’s recommendations will be implemented.</td>
<td>As design stage requirements. SQE’s site inspection report and photographic evidence confirming planting in accordance with design stage plan. Relevant section or clauses of the building specification or contract or a letter from the client or principal contractor confirming the planting will be completed within 18 months from completion of the development*.</td>
</tr>
</tbody>
</table>

* This is for large mixed- use or multi-building developments, where the whole site has not been completed and ecological enhancements have not yet been added, or where features are being added at a later date in an appropriate planting season.
Additional information

Relevant definitions

Suitably qualified ecologist (SQE)

Suitably qualified ecologist (SQE) is defined under issue LE 02.

Ecological recommendations

Ecological recommendations are defined as measures adopted to enhance the ecology of the site. These are measures that the ecologist reasonably expects can be implemented, considering their feasibility taking into account building or site constraints. Measures may include but are not limited to:

1. The planting of locally appropriate native species or non-native species with a known attraction or benefit to local wildlife
2. The adoption of horticultural good practice (e.g., no, or low, use of residual pesticides)
3. The installation of bird, bat or insect boxes at appropriate locations on the site
4. Development of a full biodiversity management plan including avoiding clearance or works at key times of the year (e.g., breeding seasons)
5. The proper integration, design and maintenance of sustainable drainage systems (SuDS) (such as rain gardens), green roofs, green walls, community orchards, community allotments etc.

Other information

None.
LE 05 Long term impact on biodiversity

Number of credits available	Minimum standards
2 | No

Aim

To minimise the long term impact of the development on the site and the surrounding area’s biodiversity.

Assessment criteria

The following is required to demonstrate compliance:

Up to two credits – Ecologist’s report and recommendations

1. Where a suitably qualified ecologist (SQE) is appointed prior to commencement of activities on site and they confirm that all relevant European, and local national regulations or legislation requirements relating to the protection and enhancement of ecology have been complied with during the design and construction process.

2. Where a landscape and habitat management plan, appropriate to the site (including impacts of the building both during construction and in operation), is produced covering at least the first five years after project completion. This is to be handed over to the building owner or occupants and includes:
 - 2.a Management of any protected features on site
 - 2.b Management of any new, existing or enhanced habitats
 - 2.c A reference to any current or future legislation requirements (local, regional or national) that apply to the site regarding the protection of species and habitats (and where applicable refer to biodiversity action strategies or action plans)
 - 2.d Confirmation from the SQE that all relevant aspects of ecology are included within the plan.

3. Where additional measures to improve the assessed site’s long term biodiversity are adopted, according to Table 49.

Where criteria 1 to 3 are met credits can be awarded as follows:

Table 49: BREEAM-SE credits achieved per number of additional measures

<table>
<thead>
<tr>
<th>No. of credits</th>
<th>No. of additional measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Where the SQE confirms that some of the additional measures listed in Table 49 are not applicable to the assessed development, the credits can be awarded as follows:
Table 50: BREEAM-SE credits achieved per number of applicable additional measures

<table>
<thead>
<tr>
<th>Applicable additional measures</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Checklists and tables

Table 49–51.

Table 51: Additional measures for the improvement of long-term biodiversity

<table>
<thead>
<tr>
<th>Ref</th>
<th>Additional measure for the improvement of long term biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The principal contractor nominates a biodiversity champion with the authority to influence site activities and ensure that detrimental impacts on site biodiversity are minimised in line with the recommendations of a SQE.</td>
</tr>
<tr>
<td>2</td>
<td>The principal contractor trains the site workforce on how to protect site ecology during the project. Specific training must be carried out for the entire site workforce to ensure they are aware of how to avoid damaging site ecology during operations on site. Training should be based on the findings and recommendations for protection of ecological features highlighted within a report prepared by a SQE.</td>
</tr>
<tr>
<td>3</td>
<td>The principal contractor records actions taken to protect biodiversity and monitor their effectiveness throughout key stages of the construction process. The requirement commits the principal contractor to make such records available where publicly requested.</td>
</tr>
<tr>
<td>4</td>
<td>Where a new ecologically valuable habitat appropriate to the local area is created. This includes a habitat that supports nationally, regionally or locally important biodiversity, or which is nationally, regionally or locally important itself. Local biodiversity expertise should be sought before the end of the Concept Design stage (tidigt programhandlingsskede) to help identify species of local biodiversity importance on site and ensure that the proposals support local priorities.</td>
</tr>
<tr>
<td>5</td>
<td>Where flora and fauna habitats exist on site, the contractor programmes site works to minimise disturbance to wildlife. For example, site preparation, ground works, and soft landscape works have been, or will be, scheduled at an appropriate time of year to minimise disturbance to wildlife. Timing of works may have a significant impact on, for example, breeding birds, flowering plants, seed germination, amphibians etc. Actions such as phased clearance of vegetation may help to mitigate ecological impacts. This additional requirement will be achieved where a clear plan has been produced detailing how activities will be timed to avoid any impact on site biodiversity in line with the recommendations of a SQE.</td>
</tr>
<tr>
<td>6</td>
<td>Education buildings (preschools, schools and colleges only) A partnership has been set up by the design team with a local group that has wildlife expertise and the group has:</td>
</tr>
<tr>
<td></td>
<td>1. Provided advice early in the design process regarding protecting and providing habitats for species of local importance on the site</td>
</tr>
<tr>
<td></td>
<td>2. Provided advice to ensure the design is in keeping with the local environment. In particular this should draw on their local knowledge of any features or species of ecological interest on or near the site</td>
</tr>
<tr>
<td></td>
<td>3. Provided, or will continue to provide, ongoing support and advice to the educational establishment to help them manage, maintain and develop the outdoor space in the longer term.</td>
</tr>
</tbody>
</table>
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Shell and core (non-residential and residential institutions only)</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td>CN2 Residential – Partially fitted and fully fitted</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>General</td>
<td>In all cases it is necessary to employ a SQE to achieve credits for this BREEAM-SE issue. As a minimum the SQE must provide the following in writing:</td>
</tr>
<tr>
<td></td>
<td>CN3.1 Land use and ecology issues non dependency</td>
<td>1. Confirmation that criteria 1 and 2 have been achieved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Clarification of how many of the additional measures for criterion 3 are applicable and have been achieved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Where the SQE confirms that none of the additional measures are applicable (due to the nature of the site and its surroundings) full credits can be awarded for demonstrating compliance with criteria 1 and 2.</td>
</tr>
<tr>
<td>CN4</td>
<td>Building specific (preschool and school buildings only)</td>
<td>This could take the form of meetings several times a year with a staff or pupils or students working party to help them plan conservation and ecological enhancement work, or activities relating to the ecology in or near the school or college grounds.</td>
</tr>
</tbody>
</table>

Methodology

None.
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| 1 – 3 | Ecologist’s report highlighting information required in Guidance Note 13 or a copy of Guidance Note 13 completed by the ecologist.
AND EITHER
A copy of the site’s landscape and habitat management plan
OR
The relevant section or clauses of the building specification or contract confirming its development and scope
OR
A letter from the client confirming a commitment to produce the management plan and its scope. | A letter from the SQE confirming that all relevant legislation relating to protection and enhancement of ecology has been complied with.
A copy of the site’s landscape and habitat management plan. |
| Additional measures | | |
| 1 | The relevant section or clauses of the building specification or contract or an appointment letter from the contractor. | Assessor inspection of, or a copy of the relevant sections of the site log book confirming the details of any action or events taken by the biodiversity champion. If no actions were required or taken, this should be confirmed in the log book. |
| 2 | Training schedule or letter of confirmation from the principal contractor committing to provide relevant training
OR
A copy of the specification clause requiring the training of the site’s workforce by the principal contractor. | A record of training undertaken including the necessary details. |
| 3 | A letter from the principal contractor confirming monitoring and reporting criteria for the development
OR
A copy of the specification clause requiring the principal contractor to undertake monitoring and reporting. | BREEAM-SE Assessor’s (or SQE’s) site inspection report and photographic evidence confirming the existence of the proposed habitat. |
| 4 | A copy of the proposed site plan highlighting the new ecologically valuable habitat and the SQE’s report or letter confirming that the habitat supports the relevant biodiversity action plans. | BREEAM-SE Assessor’s (or SQE’s) site inspection report and photographic evidence confirming the existence of the proposed habitat. |
| 5 | The SQE’s report or letter confirming actions required with respect to programming site works to minimise disturbance. The principal contractor’s programme of works
OR
The relevant section or clauses of the building specification or contract confirming that the programme of site works will minimise disturbance to wildlife in accordance with the SQE’s recommendations. | A letter from the SQE, or a copy of their report confirming site works were executed in a manner that minimised disturbance to wildlife in accordance with their recommendations. |
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
</table>
| 6 | Documentary evidence from the design team or wildlife group confirming:
1. Scope of the partnership
2. Details and remit of the wildlife group
3. A description of the process for ongoing support that the group commit to give to the partnership
4. Details of the meetings and actions to date. | Documentary evidence from the design team or wildlife group detailing, as a minimum, meetings, actions, advice given, framework for future support including a timetable for meetings and events. |

Additional information

Relevant definitions

Biodiversity

Biodiversity is defined as the variety of life on earth. It includes all species, animal, plants, fungi, algae, bacteria and the habitats that they depend upon.

Biodiversity action plan

A plan which sets specific, measurable, achievable, realistic and time bound conservation targets for species and habitats.

Biodiversity champion

An individual formally tasked by the principal contractor with the responsibility for monitoring and influencing site activities and minimising detrimental impacts on biodiversity. The individual must have sufficient authority and knowledge of ecology and construction, and also spend sufficient time on site in order to carry out the role. The biodiversity champion need not be an ecologist or ecological expert. This may be the same person as the BREEAM-SE AP in Man 03 Responsible construction practices.

Local group with wildlife expertise

A local group with wildlife expertise could be the local Wildlife Trust or an alternative group that has been involved in local wildlife conservation or enhancement projects.

Suitably Qualified Ecologist (SQE)

Refer to definition in LE 02.

Other information

Guidance on relating ecology reports to BREEAM-SE is provided in Guidance Note 13, available on SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.

The following are examples of what to include in long term management plans for habitats, species and biodiversity features:
1. Description and evaluation of features to be managed
2. Ecological trends and constraints on site that could influence management
3. Aims and objectives of management
4. Appropriate management options for achieving aims and objectives
5. Prescriptions for management actions
6. Preparation of a work schedule (including an annual work plan capable of being rolled forward over a five year period)
7. Body or organisation personnel responsible for implementation of the plan
8. Monitoring and remedial measures
9. Funding resources and mechanisms to ensure sustainable long term delivery of the proposed management.

The level of detail required for any given site should be that which is necessary to ensure the effective management of the biodiversity features present.
13.0 Pollution

Summary

This category addresses the prevention and control of pollution and surface water run-off associated with the building’s location and use. Issues in this section aim to reduce the building’s impact on surrounding communities and environments arising from light pollution, noise, flooding and emissions to air, land and water.

Category summary table

<table>
<thead>
<tr>
<th>Issue</th>
<th>Credits</th>
<th>Credit summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pol 01 Impact of refrigerants</td>
<td>3</td>
<td>Avoidance or reduction of the impact of refrigerants through specification and leak prevention or detection.</td>
</tr>
<tr>
<td>Pol 02 NOx emissions</td>
<td>2</td>
<td>Reduction in emissions of NOx arising from the building’s space and water heating systems.</td>
</tr>
<tr>
<td>Pol 03 Surface water run-off</td>
<td>5</td>
<td>Development of sites with a low probability of flooding where the design minimises the impact of flooding through careful master planning. Surface water run-off is managed to be no worse than the pre-development scenario. Watercourse pollution prevention systems are in place.</td>
</tr>
<tr>
<td>Pol 04 Reduction of night time light pollution</td>
<td>1</td>
<td>External light pollution is eliminated through effective design or the removal of the need for unnecessary external lighting.</td>
</tr>
<tr>
<td>Pol 05 Reduction of noise pollution</td>
<td>1</td>
<td>Measures to reduce the likelihood of disturbance arising as a result of noise from fixed installations on the development.</td>
</tr>
</tbody>
</table>
Pol 01 Impact of refrigerants

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To reduce the level of greenhouse gas emissions arising from the leakage of refrigerants used to heat or cool the building.

Assessment criteria

This issue is split into two parts:

- Buildings that use no refrigerants (including connection to systems off-site) (all available credits)
- OR
- For buildings that use refrigerants:
 - Prerequisite
 - Impact of refrigerant (1 to 2 credits)
 - Leak detection (1 credit)

The following is required to demonstrate compliance:

All available credits – No refrigerant use

1. Where the building does not require the use of refrigerants within its installed plant or systems, or any off-site system it is connected to. OR alternatively, where the building does require the use of refrigerants, all available credits can be awarded as follows:

Prerequisite

2. All systems (with electric compressors) must comply with the requirements of SS-EN 378-1:2016+A1:2020 or ISO 5149:2014 and where refrigeration systems containing ammonia are installed, the Institute of Refrigeration Ammonia Refrigeration Systems Code of Practice.

3. The refrigerants used must have an ozone depleting potential of zero.

Global warming impact

One credit

4. Where the systems using refrigerants have Direct Effect Life Cycle CO\(_2\) equivalent emissions (DELC CO\(_2\)e) of ≤ 1000 kg CO\(_2\)e/kW cooling or heating capacity. To calculate the DELC CO\(_2\)e, please refer to Relevant definitions and Methodology.

OR
Two credits

5. Where air-conditioning or refrigeration systems are used to heat or cool the building the refrigerants used have a Global Warming Potential (GWP) ≤ 10.

OR

6. Where the systems using refrigerants have Direct Effect Life Cycle CO$_2$ equivalent emissions (DELC CO$_2$e) of ≤ 100 kg CO$_2$e/kW cooling or heating capacity.

One credit - Leak detection

7. Where systems using refrigerants have a permanent automated refrigerant leak detection system installed; OR where an inbuilt automated diagnostic procedure for detecting leakage is installed. In all instances a robust and tested refrigerant leak detection system must be installed and must be capable of continuously monitoring for leaks.

8. The system must be capable of automatically isolating and containing the remaining refrigerant charge in response to a leak detection incident (see Other information).

Checklists and tables

Table 52–55.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Shell only: This issue is not applicable. Shell and core: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN1.1</td>
<td>Avoiding the need for refrigerants</td>
<td>Shell and core: If the building is designed in such a way that it avoids the need for refrigerant containing building services or connection to off-site systems, and therefore no ‘refrigerant-using’ building services or systems will be specified for the fit-out, then the available credits can be awarded by default.</td>
</tr>
<tr>
<td>CN2</td>
<td>Applicable assessment criteria – Single and multiple dwellings</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td>CN3</td>
<td>Refrigerant charge of less than 6kg</td>
<td>For installations of small multiple hermetic systems only where the refrigerant charge in each unit is less than 6kg, the credit for leak detection and containment can be awarded by default. This is on the basis that the risk of a large refrigerant leak due to system failure is minimised, as individual leaks from each system will be small where leakage occurs, and therefore there is little life cycle benefit of requiring leak detection equipment on each small system. Note: solutions such as this may be less energy efficient and as such may impact on the achievement of credits under Ene 01 Reduction of energy use</td>
</tr>
<tr>
<td>CN3.2</td>
<td>Specification of multiple systems</td>
<td>Where more than one air-conditioning or refrigeration system is servicing the building, the assessor must source the relevant technical data for each system and enter it into the BREEAM International 2016 Pol 01 calculator. The calculator will then determine the weighted average DELC for the multiple installation and the BREEAM-SE credits can be awarded or withheld accordingly.</td>
</tr>
</tbody>
</table>
Ref | Terms | Description
---|---|---
CN3.3 | Leak detection. See criteria 7 and 8. | The refrigerant leak detection criteria are still applicable in instances where any type of non-solid refrigerant is present, i.e., even if the refrigerant meets BREEAM-SE’s DELC CO\(_2\)e benchmarks. Exceptions to this are systems that use natural and environmentally benign refrigerants, such as air and water (for example lithium bromide or water absorption chillers) and installations of small multiple hermetic systems, where CN3.2 above applies. These types of system and refrigerants will achieve the leak detection credit by default.

CN3.4 | Leakage | In the event of a leak incident, even a system with manual shutdown and pump down of the remaining refrigerant can be accepted if it has continuous monitoring (24 hours a day every day) by competent personnel who can perform these actions immediately.

Building specific

CN4 | Industrial buildings without offices & with untreated operational areas | This issue will be filtered from the scope of assessment for industrial units designed without offices and where the operational area will be untreated, i.e., not designed to be air-conditioned or contain a cold storage facility with refrigeration plant.

Methodology

The number of credits achieved for “Global warming impact” (1–2) is determined by the assessor using the Pol 01 calculator.

The Direct Effect Life Cycle CO\(_2\)e emissions (DELC) per kW of cooling and heating capacity are calculated using the following equation:

\[
\frac{[\text{RLO} + \text{RLSR}]}{\text{CC}} \times \text{GWP}
\]

Where:

- Refrigerant loss operational (RLO) = \((\text{Ref}_{\text{charge}} \times \text{Sys}_{\text{op-life}} \times (\text{L1} + \text{L2} + \text{S1} + \text{S2}))/100\)
- Refrigerant loss system retirement (RLSR) = \(\text{Ref}_{\text{charge}} \times (1 - \text{Ref}_{\text{RecEff}}/100)\)

Where:

1. \(\text{Ref}_{\text{charge}}\): Refrigerant charge (kg)
2. \(\text{Sys}_{\text{op-life}}\): System operational lifetime (years)
3. \(\text{Ref}_{\text{RecEff}}\): Refrigerant Recovery Efficiency factor (%)
4. \(\text{L1}\): Annual Leakage Rate (% Refrigerant charge)
5. \(\text{L2}\): Annual Purge Release factor (% Refrigerant charge)
6. \(\text{S1}\): Annual Service Release (% Refrigerant charge)
7. \(\text{S2}\): Probability factor for catastrophic failure (% Refrigerant charge loss/ year)
8. \(\text{GWP}\): Global Warming Potential of refrigerant
9. \(\text{CC}\): Cooling or heating capacity (kW).

The following default values must be used, where system specific data are not available:

- \(\text{Sys}_{\text{op-life}}\): System operational design life (years): see Table 52
- \(\text{Ref}_{\text{RecEff}}\): Refrigerant recovery efficiency factor (%): 95%
L1: Annual leakage rates (% refrigerant charge): see Table 53

L2: Annual purge release factor (% refrigerant charge): 0.5 (if the system does not require an annual purge, zero should be used)

S1: Annual service release (% refrigerant charge): 0.25 (this applies where the system requires opening up to carry out the annual service. For systems which do not require opening up, there will be no associated annual release of refrigerant, therefore a default of zero should be used)

S2: Probability factor for catastrophic failure (% refrigerant charge loss/year): 1% (based on a failure rate of 1 in 100 systems).

The following information must be sourced from the design team’s mechanical and electrical engineer or system manufacturer:

- System type
- Refcharg : Refrigerant charge (kg)
- GWP: Global Warming Potential of refrigerants
- Cooling or heating capacity (kW).

Table 52: Default system operational design life values

<table>
<thead>
<tr>
<th>System type</th>
<th>Default system operational design life values (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small and medium capacity chillers</td>
<td>15</td>
</tr>
<tr>
<td>Large capacity chillers</td>
<td>20</td>
</tr>
<tr>
<td>Unitary split</td>
<td>15</td>
</tr>
<tr>
<td>Variable Refrigerant Flow (VRF) system</td>
<td>15</td>
</tr>
<tr>
<td>All other systems</td>
<td>10</td>
</tr>
</tbody>
</table>

These figures are based on those reported in LOT 6 for air-conditioning units and the British Refrigeration Association’s (BRA) Guideline Methods of Calculating TEWI (2006).

Note: The following should be considered when determining whether the system specified is defined as small or medium or large:

- Large capacity chiller: centrifugal compressor
- Medium capacity chiller: scroll or screw compressor
- Small capacity chiller: scroll compressor

Table 53: Average annual leakage rates

<table>
<thead>
<tr>
<th>System type</th>
<th>Annual leakage rate (% of charge per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold storage and display systems</td>
<td></td>
</tr>
<tr>
<td>Integral cabinets</td>
<td>3%</td>
</tr>
<tr>
<td>Split or condensing units</td>
<td>18%</td>
</tr>
<tr>
<td>Centralised</td>
<td>19%</td>
</tr>
<tr>
<td>Air-conditioning systems</td>
<td></td>
</tr>
<tr>
<td>Unitary split</td>
<td>15%</td>
</tr>
<tr>
<td>Small-scale chillers</td>
<td>10%</td>
</tr>
<tr>
<td>Medium or large chillers</td>
<td>5%</td>
</tr>
</tbody>
</table>
System type

<table>
<thead>
<tr>
<th>System type</th>
<th>Annual leakage rate (% of charge per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat pumps</td>
<td>6%</td>
</tr>
</tbody>
</table>

These figures are based on those reported in LOT 6 for air-conditioning units and also Table 2 of the Market Transformation Programmes Briefing Note for Commercial Refrigeration no. 36, 'Direct Emission of Refrigerant Gases' (version 1.2). The figures are based on the average of the leakage rates from the four separate studies reported in Table 2 (where a range is reported, the higher value was used).

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>The following as appropriate:</td>
<td>As design stage.</td>
</tr>
<tr>
<td></td>
<td>1. Confirmation of the absence of refrigerant in the development</td>
<td>Assessor’s building or site inspection or as-built drawings.</td>
</tr>
<tr>
<td></td>
<td>2. A copy of the specification clause or letter from the M&E engineer or system</td>
<td>Manufacturer’s information.</td>
</tr>
<tr>
<td></td>
<td>manufacturer confirming relevant refrigeration type and system information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. A completed copy of the Pol 01 calculator.</td>
<td></td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

BREEAM International 2016 Pol 01 calculator

A calculator tool used by the BREEAM-SE Assessor for BREEAM-SE issue Pol 01. The BREEAM International 2016 Pol 01 calculator is available at SGBC’s SharePoint page for licensed BREEAM-SE Assessors and APs.

Direct effect life cycle (DELC) carbon dioxide equivalent

A measure of the effect on global warming arising from emissions of refrigerant (in the case of this BREEAM-SE assessment issue) from the equipment to the atmosphere over its lifetime (units: kg CO₂e). The calculation involves estimating the total refrigerant release over the period of operation and subsequent conversion to an equivalent mass of carbon dioxide. Should the system use several different refrigerants, e.g., a primary refrigerant and a secondary coolant, or a cascade system, individual calculations are made for all refrigerants which contribute to the direct effect (see Global warming impact section for a description of how DELC is calculated).

Global warming potential

GWP is defined as the potential for global warming that a chemical has relative to 1 unit of carbon dioxide, the primary greenhouse gas. In determining the GWP of the refrigerant, the Intergovernmental Panel on Climate Change (IPCC) methodology using a 100-year Integrated Time Horizon (or ITH) should be applied.

Ozone depleting potential

ODP is the ratio of the relative amount of degradation to the ozone layer caused by a particular substance relative to the calculated depletion for the reference gas CFC 11 (ODP = 1.0).
Ozone depleting substances (ODS)
“Substances known to deplete the stratospheric ozone layer. The ODSs controlled under the Montreal Protocol and its Amendments are chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), halons, methyl bromide (CHBr), carbon tetrachloride (CCl4), methyl chloroform (C3H3Cl), hydrobromofluorocarbons (HBFCs) and bromochloromethane (CH2BrCl).”, extracted from IPCC/TEAP report, Special Report on Safeguarding the Ozone Layer and the Global Climate System, Cambridge University, 2006.

Refrigerant
There are three main make-ups of refrigerants:

1. Hydrogenated Fluorocarbon Refrigerants (HFCs) are made up of hydrogen, fluorine, and carbon. Because they do not use a chlorine atom (which is used in most refrigerants) they are known to be one of the least damaging to the earth’s ozone layer.

2. Hydrogenated Chlorofluorocarbon Refrigerants (HCFCs) are made up of hydrogen, chlorine, fluorine, and carbon. These refrigerants contain minimal amounts of chlorine; they are not as detrimental to the environment as some other refrigerants.

3. Chlorofluorocarbon Refrigerants (CFCs) contain chlorine, fluorine and carbon. These refrigerants carry high amounts of chlorine so they are known to be the most hazardous to the ozone layer.

The use of CFCs and HCFCs as refrigerants has been addressed under the Montreal protocol. Phase out programmes have been agreed resulting in these substances no longer being used as refrigerants in all new installations and most existing situations. The industry’s favoured replacements are currently HFCs which are often potent global warming contributors. Hydrocarbons and ammonia-based refrigerants have low or zero GWP and are therefore preferred long term options. These are now widely available and are valid alternatives to HFCs in all buildings, provided health and safety issues are fully addressed. The United Nations Environment Programme (UNEP) hosts a HCFC Help Centre which contains information about the management and phase out of HCFCs and alternatives to HCFCs in the refrigeration and air-conditioning sector.

Refrigerant leak detection
An automated permanently installed multi-point sensing system, designed to continuously monitor the atmosphere in the vicinity of refrigeration equipment and, in the event of detection, raise an alarm. The system may be aspirated or have multiple sensor heads linked to a central alarm unit or BMS. Various sensor types are available including infrared, semiconductor or electro-chemical.

Refrigerant recovery
The process of removing refrigerant from a system and storing it in an airtight container.

Refrigerant pump down
The specification of automatic refrigerant pump down can further limit potential losses and damage to the environment and have subsequent economic benefits to the building owner. Article 16 of EC Regulation 1005/2009 specifies that used CFCs and HCFCs must be recovered for deconstruction or recycling or reclamation.
Robust and tested refrigerant leak detection system

This is normally defined as that included on the Enhanced Capital Allowance (ECA) Energy Technology Product List (or an equivalent list). Where the system does not fall within the scope of the ECA energy technology product list or an equivalent list, the design team must demonstrate to the assessor that the system specified meets the principles of the scheme as far as is applicable.

Small-scale white goods

These should be defined as domestic-scale white goods and would also include small individual display cabinets, for example drinks cabinets in small retail shops.

Systems using refrigerants

The criteria of this issue apply to air-conditioning and refrigeration systems used to heat or cool the building for the following uses, regardless of the system’s refrigerant charge (kg):

- Comfort cooling or space heating (including assessment of refrigerants in heat pumps)
- Cold storage, including commercial food and drink display cabinets
- but excluding small scale white goods (see definition above)
- Process-based cooling loads, e.g., servers, IT equipment.
- Off-site facilities such as district heating or cooling systems.

Other information

Automatic isolation and containment of refrigerant

Any system that isolates and contains refrigerant within the system so as to minimise leakage to the atmosphere in the event of a systems failure. An example of a system which could meet criterion 8 would be one which initiates an automated shut down and pump down of the refrigerant into a separate storage tank.

Common refrigerants

Table 54: List of some common refrigerant types with low GWP

<table>
<thead>
<tr>
<th>R-Number</th>
<th>Chemical name</th>
<th>GWP 100-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-30</td>
<td>Dichloromethane</td>
<td>9</td>
</tr>
<tr>
<td>R-170</td>
<td>Ethane</td>
<td>3</td>
</tr>
<tr>
<td>R-290</td>
<td>Propane</td>
<td>3</td>
</tr>
<tr>
<td>R-600</td>
<td>Butane</td>
<td>3</td>
</tr>
<tr>
<td>R-600a</td>
<td>Isobutane</td>
<td>3</td>
</tr>
<tr>
<td>R-702</td>
<td>Hydrogen</td>
<td>5.8</td>
</tr>
<tr>
<td>R-717</td>
<td>Ammonia</td>
<td>0</td>
</tr>
<tr>
<td>R-718</td>
<td>Water</td>
<td><1</td>
</tr>
<tr>
<td>R-729</td>
<td>Air (nitrogen, oxygen, argon)</td>
<td>0</td>
</tr>
<tr>
<td>R-744</td>
<td>Carbon dioxide</td>
<td>1</td>
</tr>
</tbody>
</table>
Ozone depleting potential refrigerants

Both CFCs and HCFCs are now tightly controlled or due to be phased out in the foreseeable future in all signatory countries to the Montreal Protocol on Substances That Deplete the Ozone Layer, BREEAM-SE only recognizes refrigerants that have an ODP of zero. Table 55 gives current ODP figures for a range of available substances that are capable of acting as refrigerants; assessors should use this to verify the ODP of the specified refrigerant. Substances not on this list should be referred to the BREEAM-SE office so that an appropriate figure can be established.

Note: This table omits substances that are not typically used as refrigerants in buildings.

Table 55: Ozone depleting potential of refrigerants
<table>
<thead>
<tr>
<th>Refrigerant type</th>
<th>Ozone depleting potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>R22 (HCFC-22)</td>
<td>0.05</td>
</tr>
<tr>
<td>R123 (HCFC-123)</td>
<td>0.02</td>
</tr>
<tr>
<td>R134a (HFC-134a)</td>
<td>0.00</td>
</tr>
<tr>
<td>R124 (HCFC-124)</td>
<td>0.02</td>
</tr>
<tr>
<td>R141b (HCFC-141b)</td>
<td>0.11</td>
</tr>
<tr>
<td>R142b (HCFC-142b)</td>
<td>0.07</td>
</tr>
<tr>
<td>R143a (HFC-143a)</td>
<td>0.00</td>
</tr>
<tr>
<td>R32 (HCFC-32)</td>
<td>0.00</td>
</tr>
<tr>
<td>R407C (HFC-407)</td>
<td>0.00</td>
</tr>
<tr>
<td>R152a (HFC-152a)</td>
<td>0.00</td>
</tr>
<tr>
<td>R404A (HFC blend)</td>
<td>0.00</td>
</tr>
<tr>
<td>R410A (HFC blend)</td>
<td>0.00</td>
</tr>
<tr>
<td>R413A (HFC blend)</td>
<td>0.00</td>
</tr>
<tr>
<td>R417A (HFC blend)</td>
<td>0.00</td>
</tr>
<tr>
<td>R500 (CFC/HFC)</td>
<td>0.74</td>
</tr>
<tr>
<td>R502 (HCFC/CFC)</td>
<td>0.33</td>
</tr>
<tr>
<td>R507A (HFC azeotrope)</td>
<td>0.00</td>
</tr>
<tr>
<td>R290 (HC290 propane)</td>
<td>0.00</td>
</tr>
<tr>
<td>R600 (HC600 butane)</td>
<td>0.00</td>
</tr>
<tr>
<td>R600a (HC600a isobutane)</td>
<td>0.00</td>
</tr>
<tr>
<td>R290/R170 (HC290/HC170)</td>
<td>0.00</td>
</tr>
<tr>
<td>R1270 (HC1270 propene)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Pol 02 NO\textsubscript{x} emissions

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To contribute to a reduction in local NO\textsubscript{x} emission levels through the use of low emission heat sources in the building.

Assessment criteria

The following is required to demonstrate compliance:

Two credits (All building types other than Industrial)

1. Where the plant installed to meet the building’s delivered heating and hot water demand has, under normal operating conditions, direct NO\textsubscript{x} emission level (measured on a dry basis at 0\% excess O\textsubscript{2}) as follows:

 Table 56: BREEAM-SE credits achieved for NO\textsubscript{x} Emission levels

<table>
<thead>
<tr>
<th>NO\textsubscript{x} Emission levels for heating and hot water (mg/kWh)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 56 mg/kWh</td>
<td>1 credit</td>
</tr>
<tr>
<td>≤ 40 mg/kWh</td>
<td>2 credits</td>
</tr>
</tbody>
</table>

 Note for residential developments: Each self-contained dwelling must meet the requirements.

Two credits (Industrial building types only)

Table 57: BREEAM-SE credits achieved for NO\textsubscript{x} Emission levels in Industrial buildings

<table>
<thead>
<tr>
<th>NO\textsubscript{x} Emission levels for heating and hot water (mg/kWh)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office and associated areas ≤ 56 mg/kWh</td>
<td>1 credit</td>
</tr>
<tr>
<td>Operational areas ≤ 56 mg/kWh</td>
<td>1 credit</td>
</tr>
</tbody>
</table>

2. Report via the BREEAM-SE scoring and reporting tool the direct and indirect NO\textsubscript{x} emissions in mg/kWh and energy use in kWh/m2/yr arising from systems installed to meet the building’s space heating, cooling and hot water demands.

Checklists and tables

Table 56–58.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Shell only: This issue is not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shell and core: All criteria relevant to the building type and function apply.</td>
</tr>
</tbody>
</table>

Shell and core (non-residential and residential institutions only)

| CN2 | Applicable assessment criteria | Both options: All criteria relevant to the building type and function apply. |

Residential – Partially fitted and fully fitted

| CN3 | Applicable assessment criteria | If the heating/hot water demand for the new extension is being met by an existing system, then the NO\textsubscript{x} emission level for the existing system must be assessed against the criteria of this issue. |

| CN3.1| NO\textsubscript{x} data provided in different units | Where NO\textsubscript{x} data are provided in different units or at a level of excess oxygen greater than zero, the manufacturer or supplier must be asked to convert this to comply with the BREEAM-SE criteria. Alternatively, the assessor may adjust the figure using the relevant correction factors provided in the Pol 02 NO\textsubscript{x} emissions section. Where combined heat and power (CHP) systems are used, these conversion factors cannot be used and the information must be obtained from the system manufacturer. |

| CN3.2| District cooling | District cooling can be considered to generate zero NO\textsubscript{x} emissions locally from the building. It thus does not contribute to the NO\textsubscript{x} emissions to be reported in criterion 2. |

| CN3.3| Grid electricity | Heating systems powered by grid electricity can be considered to have zero NO\textsubscript{x} emissions. If all heating in the building is provided by grid electricity the credits can be awarded by default. The reason for this is based on the aim of this issue, which is to improve local air quality. |

| CN3.4| District heating | District heating can be considered to have zero NO\textsubscript{x} emissions locally by the building. If all heating and hot water in the building is provided by district heating the credits can be awarded by default. This compliance note only applies to existing district heating systems. For new ones, it applies only if the client and design team have no control over the design of it. |

| CN3.5| Electricity from a renewable source | Where electricity used by the heating system is sourced from a zero emission renewable source such as PVs, wind etc., there are no resulting emissions. This source of heating can therefore be counted as having zero NO\textsubscript{x} emissions. |

| CN3.6| Combined heat and power | Refer to the Additional information section for guidance on calculating NO\textsubscript{x}emission levels from CHP. |

| CN3.7| Heat recovery | Heat recovery can be considered as having zero NO\textsubscript{x} emissions for the purpose of this issue. |

| CN3.8| Open flues | No credits may be awarded for open flue heating or hot water systems. |

| CN3.9| Water heating benchmark and point of use heaters | Where the water heating can be demonstrated to be less than 10% of the building’s total energy use, these credits can be awarded based solely on the NO\textsubscript{x} emissions from space heating. |

| CN3.10| More than one heating system | Where more than one heating system is specified refer to the Additional information section for guidance on calculating emission levels. |
At present the Pol 02 issue does not benchmark and award credits for NO\textsubscript{x} emission levels associated with a building’s cooling demands. To facilitate possible future benchmarking of this kind and alignment with European Standards on the Sustainability of Construction Works, BREEAM-SE does require, as a condition of achieving any credits for this issue, the reporting of both direct and indirect NO\textsubscript{x} emissions resulting from meeting the building’s heating, cooling and hot water demands.

In the case of indirect emissions, this refers primarily to emissions associated with grid electricity, where grid electricity is a source of energy for the building’s heating, cooling or hot water demands. Direct NO\textsubscript{x} emissions are those resulting from the burning of fuel on site or in the assessed building to meet heating, cooling or hot water demands, for example via a gas, oil-fired or biomass boiler.

Building type specific

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3.11</td>
<td>Assessment and reporting of a building’s NO\textsubscript{x} emissions from cooling</td>
<td>At present the Pol 02 issue does not benchmark and award credits for NO\textsubscript{x} emission levels associated with a building’s cooling demands. To facilitate possible future benchmarking of this kind and alignment with European Standards on the Sustainability of Construction Works, BREEAM-SE does require, as a condition of achieving any credits for this issue, the reporting of both direct and indirect NO\textsubscript{x} emissions resulting from meeting the building’s heating, cooling and hot water demands. In the case of indirect emissions, this refers primarily to emissions associated with grid electricity, where grid electricity is a source of energy for the building’s heating, cooling or hot water demands. Direct NO\textsubscript{x} emissions are those resulting from the burning of fuel on site or in the assessed building to meet heating, cooling or hot water demands, for example via a gas, oil-fired or biomass boiler.</td>
</tr>
</tbody>
</table>

Methodology

Calculating NO\textsubscript{x} emission levels from combined heat and power (CHP) systems

Where CHP systems are specified, it is only necessary to consider the heat-related NO\textsubscript{x} emissions for the assessment of this issue.
The NO\textsubscript{x} emissions associated with heat generation should be calculated using the following formula:

\[X = A \times \left(\frac{B}{B+C} \right) \]

Where:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>NO\textsubscript{x} emissions per unit of heat generated (mg/kWh heat).</td>
</tr>
<tr>
<td>A</td>
<td>NO\textsubscript{x} emissions per unit of fuel input (mg/kWh fuel input).</td>
</tr>
<tr>
<td>B</td>
<td>Heat output (kW).</td>
</tr>
<tr>
<td>C</td>
<td>Electrical output (kW).</td>
</tr>
</tbody>
</table>

The above methodology determines the net NO\textsubscript{x} emissions from CHP-generated electricity compared with central generation of electricity and allocates this amount to the heat production. Where x is calculated to be negative, it should be assumed to be zero.

Calculating the average NO\textsubscript{x} emission levels from multiple systems

Where the CHP or other heating system type operates in conjunction with another system, an average NO\textsubscript{x} emission rate should be used based on the ratio of power output from each source, i.e. multiply the emissions of each system by the percentage of heat demand it supplies and total these values.

Where there are multiple sources of heat generation, an average NO\textsubscript{x} emission rate should be calculated based on the ratio of heat output (kW) from each heat source. The following formula can be used for such cases:

\[\text{NOX}_{\text{avg}} = N_1 \times \left(\frac{H_1}{H_T} \right) + N_2 \times \left(\frac{H_2}{H_T} \right) + \ldots + N_n \times \left(\frac{H_n}{H_T} \right) \]

Where:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{NOX}_{\text{avg}}</td>
<td>Average NO\textsubscript{x}</td>
</tr>
<tr>
<td>N_1</td>
<td>NO\textsubscript{x} emissions rate for source 1</td>
</tr>
<tr>
<td>N_2</td>
<td>NO\textsubscript{x} emissions rate for source 2</td>
</tr>
<tr>
<td>N_n</td>
<td>NO\textsubscript{x} emissions rate for source n</td>
</tr>
<tr>
<td>H_T</td>
<td>Total rated power output from all sources</td>
</tr>
<tr>
<td>H_1</td>
<td>Rated power output from source 1</td>
</tr>
<tr>
<td>H_2</td>
<td>Rated power output from source 2</td>
</tr>
<tr>
<td>H_n</td>
<td>Rated power output from source n</td>
</tr>
</tbody>
</table>
Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post-construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Relevant section or clauses of the building specification or contract. Manufacturer’s product details. Calculations.</td>
<td>As design stage. Report and photographic evidence.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Approved building energy calculation software
Refer to BREEAM-SE issue Ene 01 Reduction of energy use

NO\textsubscript{x} emissions

NO\textsubscript{x} emissions are pollutant gases produced by the combustion of fuels. NO\textsubscript{x} reacts with heat and sunlight to produce ozone that can cause serious respiratory problems. It also reacts with water to produce acid rain which has a detrimental effect on ecosystems. For the purposes of BREEAM-SE, NO\textsubscript{x} emission levels are required in units of mg/kWh, measured on a dry basis at 0% excess oxygen levels.

Conversion factors

Manufacturers should be asked to supply NO\textsubscript{x} emissions data in mg/kWh, measured on a dry basis. Where this is not possible the assessor may use the following conversion factors to convert figures in parts per million (ppm), mg/ MJ, mg/m3 or wet NO\textsubscript{x}. It should be noted that these conversion factors assume worst case efficiencies and are likely to give conservative answers. This could have the effect of lowering the number of credits achieved. Note that these conversion factors are not applicable where combined heat and power (CHP) systems are being used. Please see the calculation procedures below for further details on assessing CHP systems for this issue.

1. Figures in mg/m3 should be multiplied by 0.859 in order to convert emissions into mg/kWh (81). A conversion may also be necessary for data not calculated at 0% excess oxygen.
2. Figures in ppm should be multiplied by 1.76 in order to convert emissions into mg/kWh. A conversion may also be necessary for data not calculated at 0% excess oxygen.
3. Figures in mg/MJ should be multiplied by 3.6 in order to convert emissions into mg/kWh (1 kWh = 3.6 MJ). A conversion may also be necessary for data not calculated at 0% excess oxygen.

Wet NO\textsubscript{x} conversion factor

This issue’s criteria are based on dry NO\textsubscript{x} values; almost all manufacturers will quote emissions measured on a dry basis.

However, if wet NO\textsubscript{x} figures are supplied, these will need to be converted to dry. The following formula should be used to determine the wet NO\textsubscript{x} conversion factor :

\[
\text{Conversion factor } c = \frac{100}{(100-y)}
\]
Where y is the % water vapour content measured in the gas. This figure should be obtained from the manufacturer.

Excess oxygen correction

If a NO$_x$ emission rate is quoted by the manufacturer in mg/m³ or ppm, then it should be established at what percentage excess oxygen this emission was measured. The greater the amount of excess oxygen in the flue gases at the time of measurement, the more ‘diluted’ the NO$_x$ emissions. It is therefore important to convert any emission rate back to 0% excess oxygen. For the purpose of BREEAM-SE, the following conversion factors can be used for the most frequently used rates supplied by manufacturers:

Table 58: Excess oxygen conversion factors

<table>
<thead>
<tr>
<th>% Excess O$_2$</th>
<th>Conversion (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3%</td>
<td>x 1.17</td>
</tr>
<tr>
<td>6%</td>
<td>x 1.40</td>
</tr>
<tr>
<td>15%</td>
<td>x 3.54</td>
</tr>
</tbody>
</table>

Conversion factor $c = \frac{20.9}{(20.9 - x)}$

Where $x = \%$ excess O$_2$ (NOT excess air) and 20.9 is the percentage of O$_2$ in the air.

Other information

Some systems may find it difficult to achieve credits in this issue, including:

Biomass

Biomass systems are recognised as reducing the impact of fossil fuel depletion by employing a renewable fuel source (provided it is sustainably sourced). However, biomass can produce a significant amount of NO$_x$ and so may not achieve this credit. They may, however, gain recognition in the energy section of BREEAM-SE.
Pol 03 Surface water run-off

<table>
<thead>
<tr>
<th>Number of credits available</th>
<th>Minimum standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>No</td>
</tr>
</tbody>
</table>

Aim

To avoid, reduce and delay the discharge of rainfall to public sewers and watercourses, thereby minimising the risk and impact of localised flooding on and off-site, watercourse pollution and other environmental damage.

Assessment criteria

This issue is split into three parts:

- Flood risk (1 to 2 credits)
- Surface water run-off (2 credits)
- Minimising watercourse pollution (1 credit)

Up to two credits - Flood resilience

Two credits – Low flood risk

1. Where a site-specific flood risk assessment (FRA) confirms the development is situated in a flood zone that is defined as having a low annual probability of flooding (in accordance with current best practice national planning guidance). The FRA must take all current and future sources of flooding into consideration (see CN3.2).

One credit – Medium or high flood risk

2. Where a site-specific FRA confirms the development is situated in a flood zone that is defined as having a medium or high annual probability of flooding and is not in a functional floodplain (in accordance with current best practice national planning guidance). The FRA must take all current and future sources of flooding into consideration (see CN3.2).

3. To increase the resilience and resistance of the development to flooding, one of the following must be achieved:
 3.a The ground level of the building and access to both the building and the site, are designed (or zoned) so they are at least 600mm above the design flood level of the flood zone in which the assessed development is located (see CN3.5)
 OR
 3.b The final design of the building and the wider site reflects the recommendations made by an appropriate consultant.
Two credits – Surface water run-off

Prerequisite

4. An appropriate consultant is appointed to carry out, demonstrate or confirm the development’s compliance with the following criteria:

One credit

5. Where drainage measures are specified to ensure that the peak rate of run-off from the site to the watercourses (natural or municipal) is no greater for the developed site than it was for the pre-development site. This should comply at the 1-year and 100-year return period events.

6. Relevant maintenance agreements for the ownership, long term operation and maintenance of all specified sustainable drainage systems (SuDS) are in place.

7. Calculations include an allowance for climate change; this should be made in accordance with current best practice planning guidance (see Relevant definitions).

One credit

8. Where flooding of property will not occur in the event of local drainage system failure (caused either by extreme rainfall or a lack of maintenance); AND

EITHER

9. Drainage design measures are specified to ensure that the post-development run-off volume, over the development lifetime, is no greater than it would have been prior to the assessed site’s development for the 100-year 6-hour event, including an allowance for climate change (see criterion 14).

10. Any additional predicted volume of run-off for this event is prevented from leaving the site by using infiltration or other SuDS techniques.

OR (only where criteria 9 and 10 for this credit cannot be achieved):

11. Justification from the appropriate consultant indicating why the above criteria cannot be achieved, i.e. where infiltration or other SuDS techniques are not technically viable options.

12. Drainage design measures are specified to ensure that the post-development peak rate of run-off is reduced to the limiting discharge. The limiting discharge is defined as the highest flow rate from the following options:

 12.a The pre-development 1-year peak flow rate;

 OR

 12.b The mean annual flow rate Qbar;

 OR

 12.c 2L/s/ha.

Note that for the 1-year peak flow rate the 1-year return period event criterion applies (as described in the peak run-off criteria above).

13. Relevant maintenance agreements for the ownership, long term operation and maintenance of all specified SuDS are in place.
14. For either option, above calculations must include an allowance for climate change; this should be made in accordance with current best practice planning guidance.

Two credits - Surface water run-off - Single dwellings only

For single dwellings, the below criteria should be applied in place of the surface water run-off criteria above (please see CN2.1 for more information).

15. Either of the following criteria is met:
 15.a There is a decrease in the impermeable area by 50% or more, from the pre-existing impermeable hard surfaces;

 OR

15.b Where all run-off from the roof for rainfall depths up to 5mm from all new and existing parts of the building have been managed on site using source control methods.

OR

One credit – Surface water run-off - Single dwellings only

16. Either of the following criteria is met:

16.a There is no increase in the impermeable surfaces as a result of the new construction;

 OR

16.b If there is an increase in the impermeable surfaces as a result of the new construction then the following must be met:

16.b.i Hard standing areas - where there is an extension or increase in the hardstanding areas and hence an increase in the total impermeable area as a result of the new construction, the hardstanding area must be permeable or be provided with on site SuDS to allow full infiltration of the additional volume, to achieve the same end result. The permeable hardstanding must include all pavements and public rights of way, car parks, driveways and non-adoptable roads, but can exclude small garden paths which will drain onto a naturally permeable surface.

16.b.ii Building (new-build or extension) - where there is an increase in building footprint, extending onto any previously permeable surfaces, the additional run-off caused by the area of the new- build or extension must be managed on site using an appropriate SuDS technique for rainfall depths up to 5 mm.

One credit – Minimising watercourse pollution

17. There is no discharge from the developed site for rainfall up to 5mm (confirmed by the appropriate consultant).

18. In areas with a low-risk source of watercourse pollution, an appropriate level of pollution prevention treatment is provided, using appropriate SuDS techniques.

19. Where there is a high risk of contamination or spillage of substances such as petrol and oil (see CN3.19), separators (or an equivalent system) are installed in surface water drainage systems.
20. Where the building has chemical or liquid gas storage areas, a means of containment is fitted to the site drainage system (i.e., shut-off valves) to prevent the escape of chemicals to natural watercourses (in the event of a spillage or bunding failure).

21. A comprehensive and up-to-date drainage plan of the site will be made available for the building or site occupiers.

22. Relevant maintenance agreements for the ownership, long term operation and maintenance of all specified SuDS must be in place.

Checklists and tables

None.

Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Applicable assessment criteria</td>
<td>Both options: All criteria relevant to the building type and function apply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN2 | Applicable assessment criteria – Single dwellings | **Flood resilience: criteria 1 to 3**
Both options: All criteria relevant to the building type and function apply.
Surface water run-off: criteria 4 to 16
Both options: Only single dwelling criterion 15 or 16 apply.
Minimising watercourse pollution: criteria 17 to 22
Both options: All criteria relevant to the building type and function apply. |
| CN2.1 | Applicable assessment criteria – Multiple dwellings | **Flood resilience: criteria 1 to 3**
Both options: All criteria relevant to the building type and function apply.
Surface water run-off: criteria 4 to 16
Both options: Criteria 4 to 14 apply only.
Minimising watercourse pollution: criteria 17 to 22
Both options: All criteria relevant to the building type and function apply. |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN3</td>
<td>Alternative standards and recommendations from an appropriate statutory body. See criteria 1 and 2.</td>
<td>None of the credits can be awarded where the assessed development has proceeded against the recommendation of the statutory body on the basis that the flooding implications are too great (this includes a recommendation given by the statutory body even where such a recommendation cannot be, or is not, statutorily enforced). Where the local authority (or other statutory body) has set more rigorous criteria than those above these must be met in order to achieve the relevant credits.</td>
</tr>
<tr>
<td>CN3.1</td>
<td>Contaminated sites. See criteria 5–16.</td>
<td>Drainage designs for sites must take into account legislation relating to contaminated sites; however, in many circumstances even on contaminated sites there may be opportunities for the installation of some SuDS techniques. Please see Relevant definitions.</td>
</tr>
<tr>
<td>Flood resilience</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN3.2 | Sources of flooding. See criteria 1 and 2. | The Flood Risk Assessment (FRA) must detail the risk of flooding from the following sources:
1. Fluvial (rivers)
2. Tidal
3. Surface water: sheet run-off from adjacent land (urban or rural)
4. Groundwater: most common in low-lying areas underlain by permeable rock (aquifers)
5. Sewers: combined, foul or surface water sewers
6. Reservoirs, canals and other artificial sources.
Please refer to the Other information section for more detail on the above sources of flooding.
The content of the FRA should be based on historic trends, but should also account for predicted changes to the climate which may impact on the flood risk to the site in the future. |
<p>| CN3.3 | Functional flood plain. See criterion 3. | The BREEAM-SE credit for locating in a flood zone of ‘medium or high annual probability’ cannot be awarded where the building is located in the functional flood plain. This is defined in the current best practice national planning guidance for each country. |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3.4</td>
<td>Flood defences.</td>
<td>Third party defences
There are many landscape feature defences, owned by third parties, which due to their location act as a flood defence by default, e.g. motorway, railway embankments, walls etc. It can be assumed that such embankments will remain in place for the lifetime of the development, unless the assessor or project team have reason to believe otherwise. For walls, assurance must be sought that the wall is likely to remain for the design life of the building.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-existing flood defences
In an area protected by existing flood defences (designed to withstand a certain magnitude of flooding) the appropriate number of flood risk credits can be awarded where the defences reduce the risk to 'low' or 'medium' and the following conditions are met:
1. The development is not located in an area where new flood defences have to be, or have been, constructed to minimise the risk of flooding to the site and its locality purely for the purpose of the development or its wider master plan
2. The relevant agency confirms that, as a result of such defences, the risk of a flood event occurring is reduced to low or medium risk. If firm confirmation is not provided then the credit cannot be awarded. A statutory body’s local or regional office may be able to provide more information on existing defences in the area in which the assessed development is located.</td>
</tr>
<tr>
<td>CN3.5</td>
<td>600mm threshold.</td>
<td>It is accepted that, for buildings located in medium and high risk flood zones, areas of the car park and site access may be allowed to flood and therefore fall below the 600mm threshold. In such cases the credit is still achievable provided safe access to the site, and the ground floor of the building can be maintained (i.e. they are 600mm above the design flood level) to ensure the building and site do not become an ‘island’ in the event of a flood.
Where the development has been permitted and the ground levels of the topography or infrastructure immediately adjacent to the site fall below the 600mm threshold, the credit can still be awarded, provided there are no other practical solutions for access to the site above this level and the assessed building, and access to it, meet the assessment criteria. As much of the external site area as possible (or as required by an appropriate statutory body) should be designed at or above the threshold. For buildings located in medium or high flood risk zones, any areas used to store sensitive, historical, hazardous, valuable and perishable materials, e.g. radioactive materials, microbiological facilities, server rooms, libraries, etc., must be located above the 600mm threshold.</td>
</tr>
<tr>
<td>CN3.6</td>
<td>Level of detail required in the FRA for smaller sites.</td>
<td>For smaller sites, e.g. less than 1 ha (10,000 m²), the level of detail required in an acceptable FRA will depend on the size of the site and the arrangement of buildings on that site. For a small site with a relatively simple arrangement of buildings this might consist of a brief report. For larger sites with a higher density of buildings a more detailed assessment would be appropriate. For small simple sites (2000 m² and less), an acceptable FRA could be a brief report carried out by the contractor’s engineer confirming the risk of flooding from all sources of flooding, including information obtained from the water company or sewerage undertaker, other relevant statutory authorities, site investigation and local knowledge.</td>
</tr>
</tbody>
</table>
Surface water run-off

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
</table>
| CN3.7 | Sites with many buildings | Where the assessed building is part of a larger development of buildings, there are a number of options for assessment of the surface water run-off credits:
 1. The individual building and its associated hardstanding areas can be assessed independently where the run-off is being dealt with on a building-by-building basis (i.e. each building has its own dedicated sub-catchment that serves only that building)
 2. When assessing the run-off from a number of buildings (including domestic and non-domestic buildings) the assessment must take into account the drainage from the local sub-catchment serving all those dwellings or buildings. Note that proportioning cannot be used to calculate the percentage of run-off discharging into the local sub-catchment resulting from just the assessed building
 3. The whole development can be assessed for compliance. Whichever approach is taken to demonstrate compliance, it must be consistent when completing both the rate of run-off and volume of run-off calculations. |
| CN3.8 | Communal stormwater management system | If the certified building is part of a larger project with a communal stormwater management system, assessment of surface water runoff scores can be based on the entire project area. In order to award points, the criteria need to be met for the entire project area. In order to be able to obtain points for a sustainable drainage system that is not located on the site of the certifying building, it is required that the system is in operation no later than five years from the time the building is put into operation and that the shortest of the following time periods is met:
 1. The sustainable drainage system will be operational once 25% of all stages have been completed and are ready for use.
 OR
 2. The sustainable drainage system will be operational within 25% of the total construction time of the phase in which the assessed building is included, measured from the date of completion of the phase. |
<p>| CN3.9 | Discharge to the sea or tidal estuaries | The peak rate of run-off and volume run-off criteria can be deemed to be met by default if the site discharges rainwater directly to a tidal estuary or the sea. The site must discharge run-off directly into the tidal estuary or the sea, if these criteria are to be awarded by default. Typically, this would mean that drainage pipes would only carry run-off from the site and that they would not need to cross privately owned land outside the boundary of the development before reaching the sea. Please see Relevant definitions for a definition of tidal estuary. |
| CN3.10| No change in impermeable area | Where the man-made impermeable area draining to the watercourse (natural or municipal) has decreased or remains unchanged post-development, the peak and volume rate of run-off requirements for the surface water run-off credits will be met by default. Flow rate calculations will not need to be provided. Instead, drawings clearly showing the impermeable areas of the site draining to the watercourse should be provided for the pre- and post-development scenarios. Figures must also be given (ideally on the drawings) to show a comparison between the areas of drained impermeable surfaces pre-development and post-development. In this instance a flood risk assessment must be carried out and any opportunities identified to reduce surface water run-off are implemented. |
| CN3.11| Limiting discharge flow rate. See criterion 12. | For the surface water run-off credits, where the limiting discharge flow rate would require a flow rate of less than 5L/s at a discharge point, a flow rate of up to 5L/s may be used where required to reduce the risk of blockage. |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3.12</td>
<td>Highways and impermeable areas</td>
<td>Where new non-adoptable highways are built, including those for developments with a mixture of buildings, all of the new impermeable surfaces must be included in calculations to demonstrate compliance with the peak rate of run-off and volume of run-off criteria. Where buildings are built beside existing highways or where adoptable highways are built, the impermeable area of the highway does not need to be included in the calculations.</td>
</tr>
<tr>
<td>CN3.13</td>
<td>Derelict sites.</td>
<td>If the site has been derelict for over five years, the appropriate consultant must assess the previous drainage network and make reasonable assumptions to establish probable flow rates and volumes. To do this they should use best practice simulation modelling to determine the 1-year and 100-year peak flow rates at the relevant discharge points. To complete the calculations, a site visit prior to development will be required unless accurate data already exist from a previous survey. The resultant professional report can then be used to determine the pre-development volumes and rates of run-off. Without this professional input, the site must be deemed greenfield pre-development, assuming Soil type 5 for the calculation of the pre-development site run-off.</td>
</tr>
<tr>
<td>CN3.14</td>
<td>National best practice guidance on the design of SuDS and rainwater harvesting systems</td>
<td>In Sweden MSB is responsible for the implementation of the flood risk directive (2007/60/EG). Local authorities are the municipalities and the county administrative board (Länastyrelen). One task for MSB is to provide the municipalities and the county administrative board with flood maps. Apart from local policies and guidelines, best practice guidance in surface water management is summarized in the publication P110, available at Svenskt vattens webpage. Relevant data, reports and examples are gathered in The Swedish portal for climate change adaptation - klimatanpassningsportalen. Information on sewers can be found from the sewerage undertaker (VA-huvudmän) which are a part of one or more municipalities.</td>
</tr>
</tbody>
</table>

Minimising watercourse pollution

CN3.15	5mm discharge for minimising watercourse pollution. See criterion 17.	In a small number of sites, it may not be possible for the first 5mm of rainfall to be prevented from leaving the site completely. Where this is the case, an appropriately qualified professional must design the system to ensure that the intent of this criterion has been met as far as possible and provide justifications to explain why the criterion could not be fully achieved on the site. Where this can be justified, the awarding of the water quality credit would not be affected, provided all other relevant criteria have been achieved.
CN3.16	Excess water. See criterion 17.	The requirement in the criterion means that no excess water should flow from the development surface to watercourses in the event of precipitation that entails rainfall amounts up to 5mm. It is not allowed to collect rainwater in the delay tank in order to release water at a lower speed. It only delays the release of pollutants. 5mm rains are considered very common and therefore a system should be built that prevents these amounts of water from leaving the surface and thereby protect the local watercourse from pollution.
CN3.17	5mm requirement – end-of-pipe solutions. See criterion 17.	End-of-pipe solutions, such as ponds and basins, will only be deemed to comply with the 5mm criteria where the principal run-off control to prevent discharge from the first 5mm of a rainfall event is achieved using source control and site control methods.
CN3.18	5mm requirement - green roofs. See criterion 17.	Green roofs can be deemed to comply with this requirement for the rain that falls onto their surface. However, evidence is still required to demonstrate that the 5mm rainfall from all other hard surfaces on site is being dealt with, to allow this credit to be awarded.
CN3.19	Areas that are a source of pollution. See criteria 19 and 20.	For the purpose of assessing the watercourse pollution credit, an area that presents a risk of watercourse pollution includes vehicle manoeuvring areas, car parks, waste disposal facilities, delivery and storage facilities or plant areas.
Ref | Terms | Description
--- | --- | ---
CN3.20 | Extension or infill building on existing site | Where the assessment is of an individual building on an existing site, i.e. infill development, the watercourse pollution criteria apply to areas within the construction zone that present a risk of pollution, as well as any areas external to the construction zone that are affected by the new works, i.e. drainage onto or from the proposed development.

CN3.21 | Suitable level of treatment. See criteria 18–22. | In all cases the appropriate consultant should use their professional judgment to determine the most appropriate strategy for minimising watercourse pollution.

CN3.22 | Roof plant. See criteria 20, 21 and 15. | Roof-top plant space must be considered where there is a risk from polluting substances such as petrol or oil. Refrigerants are not assessed under the pollution aspect of this issue, as the main risk of pollution is to air and not the watercourse.

CN3.23 | Permeable paving system | Where it can be demonstrated that a permeable paving system designed to retain silts and degrade oils has been used, then this will meet the assessment criteria for minimising watercourse pollution for car parks and access roads.

CN3.24 | Workshop areas in retail buildings | Where workshop areas are specified, they should be assessed against the above requirements (minimising watercourse pollution). This is due to circumstances where there may be some form of vehicle servicing as part of a car showroom or other type of retail space.

Methodology

Calculating peak rate of run-off

The assessor is not required to perform any calculations. Calculations should be provided by the appropriate consultant to demonstrate that they have sized the drainage facilities appropriately. Further guidance on calculating peak rate run-off for different sites and situations include:

1. Preliminary rainfall run-off management for developments.
2. National planning policy guidance or statement for the specific country.

Greenfield sites of less than 50 ha

Greenfield sites of 50 ha to 200 ha

The calculation of greenfield run-off rates must be in accordance with IH Report 124, Flood estimation for small catchments (Marshall and Bayliss, 1994). Flood Estimation Handbook (Centre for Ecology and Hydrology, 1999) can be used for these sites as an alternative, where there is a preference to do so, but only if the catchment is considered to be suitable for its application.

Greenfield sites of more than 200 ha

The calculation of greenfield run-off rates must be in accordance with the Flood Estimation Handbook (Centre for Ecology and Hydrology, 1999) and any subsequent updates. Where the Flood Estimation Handbook is not considered appropriate for the development, IH Report 124 can be used.
Brownfield sites

The calculation of brownfield run-off rates should be as follows:

If the existing drainage is known then it should be modelled using best practice simulation modelling, to determine the 1-year and 100-year peak flow rates at discharge points (without allowing surcharge of the system above cover levels to drive greater flow rates through the discharge points).

If the system is not known, then the brownfield run-off should be calculated using the greenfield run-off models described above but with a Soil Type 5.

Limiting discharge rate

The limiting discharge for each discharge point should be calculated as the flow rates from the pre-developed site. The calculation should include the total flow rate from the total area of the site feeding into the discharge point (this should include both BREEAM-SE-assessed and non-BREEAM-SE-assessed parts of the development, if applicable). The discharge point is defined as the point of discharge into the watercourse or sewers (including rivers, streams, ditches, drains, cuts, culverts, dykes, sluices, public sewers and passages through which water flows, see Relevant definitions).

Where this calculation results in a peak flow rate of less than 5L/s, the limiting discharge rate may be increased up to a level of no more than 5L/s at the point of discharge from the site to reduce the risk of blockage.

For example, if the flow rate for the 1-year and 100-year events were 4L/s and 7L/s respectively, then the limiting discharges would be 5L/s and 7L/s. Similarly, if it was calculated to be 2L/s and 4L/s, then a maximum of 5L/s limiting discharge rate could be applied to both discharge points.

Sites should not be subdivided to enable higher overall limiting discharge rates to be claimed. It is, however, recognised that some sites may require more than one discharge point as a result of the local topography or existing surrounding drainage infrastructure, and in such cases, the limiting discharge flow rate may be increased to a level no more than 5L/s at each discharge point. The assessor should seek evidence that the number of discharge points is necessary, either due to topography, infrastructure limitations or both. Evidence may be in the form of a topographical map and an explanation from the appropriate consultant as to why multiple discharge points are required, stating that it is not feasible to have fewer discharge points.

100-year peak rate event: excess volume of run-off

The storage of excess flows from the 100-year event does not necessarily have to be contained within the drainage system or SuDS features (the features designed solely for the purpose of drainage). Where appropriate, storage of some or all of this volume can be achieved using temporary surface flooding of areas such as a playing field. Specific consideration should be given to overland flow routing. Overland flood flows and temporary storage of flood water on the surface must not be so frequent as to unreasonably inconvenience residents and other users.
Evidence

Flood Risk

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>Flood risk assessment. Design drawings. Where appropriate, correspondence from the appropriate statutory body confirming reduced annual probability of flooding due to existing flood defences.</td>
<td>Flood risk assessment updated as necessary. 'as-built' drawings. Confirmation that the basis of the Flood Risk Assessment has not changed where more than five years have passed since the Flood Risk Assessment was carried out.</td>
</tr>
</tbody>
</table>

Surface Water Run-off

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–16</td>
<td>Statement from the appropriate consultant confirming that they are qualified in line with the BREEAM-SE definition. Consultant’s report containing all information necessary to demonstrate compliance with the requirements.</td>
<td>Evidence to confirm that maintenance responsibilities have been defined for any SuDS solutions installed. AND EITHER Written confirmation from the developer or appropriate consultant that the solutions assessed at the design stage have been implemented OR Where the design has changed, the evidence identified for the design stage assessment is provided for post-construction or as-built details.</td>
</tr>
</tbody>
</table>

Minimising Watercourse Pollution

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>17–22</td>
<td>Design drawings or relevant section or clauses of the building specification or contract indicating: 1. High and low risk areas of the site 2. Specification of SuDS, source control systems, oil or petrol separators and shut-off valves as appropriate.</td>
<td>Assessor’s building or site inspection and photographic evidence AND EITHER Written confirmation from the developer or appropriate consultant that the solutions assessed at the design stage have been implemented OR Where the design has changed, the evidence identified for the design stage assessment is provided for post-construction or as-built details.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Adoptable highways

For the purposes of BREEAM-SE, an ‘adoptable’ highway is a highway that is the responsibility of the highways authority in terms of installation and maintenance of surface water drainage which only carries run-off from the highway itself.

This means that to fall under the definition of an ‘adoptable highway’ the drainage network must not be directly connected to any other upstream drainage network (e.g. from a private development) and only handle run-off from the adoptable highway. Where drainage within the highway will carry run-off from both the highway and housing, it is not regarded as an ‘adoptable’ highway. In this instance the drainage design must take account of the highway run-off.
Appropriate consultant

A consultant with qualifications and experience relevant to designing SuDS and flood prevention measures and completing peak rate of run-off calculations. Where complex flooding calculations and prevention measures are required, this must be a specialist hydrological engineer.

Appropriate statutory body

This refers to the statutory organisation, legal organisation or entity whose duty it is to carry out the planning approval function for the project.

Catchment

The area contributing surface water flow to a point on a drainage or water course. It can be divided into sub-catchments.

Current best practice planning guidance

The document should include independently published figures for an allowance for climate change (based on a minimum period of 100 years) according to the annual probability of flooding in the area.

Design flood level

The maximum estimated water level during the design storm event. The design flood level for a site can be determined through either known historical data or modelled for the specific site.

Design storm event

Historic or notional weather conditions of a given annual probability, against which the suitability of a proposed development is assessed and mitigation measures, if any, are designed.

Discharge point

The discharge point is the point at which the run-off from the site leaves the site boundary and enters a watercourse.

Flood defences

Flood defences do not completely remove the risk of flooding, but they do reduce it. Building in areas where flood defences are present (and appropriately designed to withstand a certain magnitude of flooding) is therefore preferable to building in medium or high risk areas without defences. However, for the purpose of this issue, it is still preferable to build in areas of low risk than encourage development of new flood defences in areas with a higher risk of flooding purely for the sake of new development.

Flood event

A flooding incident characterised by its peak level or flow, or by its level or flow hydrograph.
Flood probability

The estimated probability of a flood of given magnitude occurring or being exceeded in any specified time period. For example, the 100-year flood has a 1% chance of occurring in any given year.

Flood risk

The combination of the flood probability and the magnitude of the potential consequences of the flood event.

Flood risk assessment

A study to assess the risk of a site flooding, and to assess the impact that any changes or development on the site will have on flood risk to the site and elsewhere. A Flood Risk Assessment (FRA) should be prepared according to relevant planning policy and technical guidance documents. Confirmation must be based on historical, geological and geomorphic data (e.g. altitude) and take all sources of flooding into consideration. The FRA must account for future climate change and detail any necessary adaptation measures if required. Where more than five years have passed since the FRA was carried out, evidence would be required to demonstrate that the basis of the FRA has not changed in that time.

Flood storage

The temporary storage of excess run-off or river flow in ponds, basins, reservoirs or on the flood plain during a flood event.

Greenfield

A site which has either never been built on, or one which has remained undisturbed for five years or more.

Greenfield run-off rate

The rate of run-off that would occur from the site in its undeveloped and therefore undisturbed state.

Hard surfaces

These include roofs, car parks, access roads, pavements, delivery and service yards and external hard landscaping. Footpaths less than 1.5m wide which have free drainage to soft landscaped areas on both sides may be excluded.

Infiltration

The passage of water into a permeable surface, such as soil, permeable paving and soakaways.

Level of pollution prevention treatment

When used in the context of one, two or three levels of treatment for surface water, the treatment level should be regarded as the number of SuDS components in series through which run-off
passes from the originating surface on which rainfall fell to the site discharge point. Where a SuDS component has more than one treatment process, it might be considered to provide more than one level of treatment. In these circumstances advice should be sought from the BREEAM-SE office.

Limiting discharge
The limiting discharge is based upon the calculated pre-development flow rate at a discharge point.

Low-risk areas (with respect to watercourse pollution)
Low-risk areas can be defined as areas where the risk of contamination or spillage of substances such as petrol and oil are reduced. For the purpose of this issue, roofs and small car parks may be considered as low-risk areas.

Peak run-off rate (referred to as Qp [m³/sec])
This is the highest rate of flow from a defined catchment area assuming that rainfall is uniformly distributed over the drainage area, considering the entire drainage area as a single unit and estimation of flow at the most downstream point only.

Pre-development
The state of the site under assessment immediately prior to purchase of the site by the client or developer (or, where the client has owned or occupied the site for a number of years, its current state).

Qbar
An estimation of the mean annual flood flow rate from a catchment (see Report IH124 Flood estimations for small catchments).

Rainwater discharge
Rainwater discharge is the rainwater which flows from the development site to watercourses and sewers. It is also referred to as run-off.

Run-off
This is usually rainwater but can also be groundwater or overspill from sewers and other sources.

Sewerage undertaker
This is a Body, typically a water company, with statutory responsibility for sewerage and sewerage disposal and also surface water from roofs and yards of premises.

Soakaways
A subsurface structure designed to promote the infiltration of surface water into the ground. As a general point, soakaways may be shallow and broad – as in a blanket under permeable paving, or deeper structures. Deeper, point source soakaways should be avoided for road and car park drainage; shallow structures providing infiltration in an extensive way (infiltration trenches and
permeable paving) do not need oil separators.

SuDS management train

An approach to drainage design that combines a sequence of appropriate surface water drainage structures using SuDS systems for management of the run-off to treat the flow, reduce run-off volume and restrain the run-off rate in order to minimise man’s impact on the environment. Additional benefits associated with operation and maintenance, ecology and amenity are aspects which are considered when designing a management system. The management train incorporates a hierarchy of techniques:

1. **Source control.** Examples of SuDS techniques include:
 - Soakaways
 - Porous or pervious paving
 - Roof water directed to garden (rather than piped drains)
 - Rainwater reuse or harvesting
 - Green roofs
 - Other surface infiltration, attenuation and conveyance techniques that deal with run-off at source.

2. **Site or local control.** Examples of SuDS techniques include:
 - Swales
 - Pond
 - Infiltration basins
 - Detention basin
 - Larger soakaways
 - Pervious (porous or permeable) paving.

3. **Regional control.** Examples of techniques include:
 - Balancing ponds
 - Wetlands
 - Large detention basin.

SuDS techniques

One or more components built to manage surface water run-off to prevent flooding and pollution, including for example: wet ponds, infiltration basins, detention basins, swales, reed beds, pervious (porous or permeable) paving, soakaways, rainwater harvesting, filter strips, filter drains and trenches with or without perforates pipes, green roofs and underground attenuation storage. For more information refer to The SuDS manual.

Surface water run-off

Water flow over the ground surface to a drainage system. This occurs if the ground is impermeable, is saturated or if the rainfall is particularly intense.
Tidal estuary

A tidal estuary is defined as a semi-enclosed coastal body of water which has a free connection with the open sea and within which seawater is measurably diluted with fresh water derived from land drainage. An estuary should be unconstrained tidal waters, i.e. there should be no barriers or constricted shorelines that would restrict the free flow of water into the open sea in any conditions. The impact on the total volume of run-off from the site (and other sites which may in future discharge into the estuary) should be insignificant in terms of the overall water levels in the estuary. Tidal rivers (i.e. where no or limited measurable seawater content is present during normal tidal movements) cannot be included as part of the estuary for the purposes of BREEAM-SE.

Treatment

Improving the quality of water by physical, chemical or biological means.

Types of oil separator

Class 1 Separators: These are designed to achieve a concentration of less than 5mg/l oil under standard test conditions. They should be used when the separator is required to remove very small oil droplets, such as those arising from car park run-off.

Class 2 Separators: These are designed to achieve a concentration of less than 100mg/l oil under standard test conditions. They are suitable for dealing with discharges where a lower quality requirement applies or for trapping large spillages. Both classes can be produced as 'full retention' or 'bypass' separators:

- **Full retention separators**: These treat the flow that can be delivered by the drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 50mm/hr.

- **Bypass separators**: These fully treat all flows generated by rainfall rates of up to 5mm/hr. Flows above this rate are allowed to bypass the separator. These separators are used when it is an acceptable risk not to provide full treatment for high flows. Pollution Prevention Guideline 3 contains more detailed guidance on the selection and sizing of an appropriate type of separator.

Volume of run-off

The volume of run-off that is generated by rainfall occurring on the site. This is typically measured in cubic metres. Additional predicted volume of run-off is the difference between the volumes of run-off pre-development and post-development.

Watercourses and sewers

A term that includes rivers, streams, ditches, drains, culverts, dykes, sluices, sewers and passages through which water flows.
Other information

Contaminated sites

Where the site risk assessment confirms that infiltration SuDS techniques are not appropriate, SuDS techniques that do not allow infiltration, such as swales lined with an impermeable membrane, can be used. It may be the case that only some areas of the site are contaminated and therefore infiltration SuDS techniques can be used elsewhere on the site. There may also be a requirement to remediate the contaminated soils, creating opportunities for the use of infiltration SuDS post-remediation.

Sources of flooding and flood risk

1. Streams and Rivers: Flooding that can take place from flows that are not contained within the channel due to high levels of rainfall in the catchment.
2. Coastal or Estuarine: Flooding that can occur from the sea due to a particularly high tide or surge, or a combination of both.
3. Groundwater: Where the water table rises to such a height where flooding occurs. Most common in low-lying areas underlain by permeable rock (aquifers), usually due to extended periods of wet weather.
4. Sewers and highway drains: Combined, foul or surface water sewers and highway drains that are temporarily over-loaded due to excessive rainfall or due to blockage.
5. Surface water: The net rainfall falling on a surface (on or off the site) which acts as run-off which has not infiltrated into the ground or entered into a drainage system.
6. Infrastructure failure: Canals, reservoirs, industrial processes, burst water mains, blocked sewers or failed pumping stations.
Pol 04 Reduction of night time light pollution
(non-residential and residential institutions only)

Aim

To ensure that external lighting is concentrated in the appropriate areas and that upward lighting is minimised, reducing unnecessary obtrusive light pollution, energy use and nuisance to neighbouring properties.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. Where external obtrusive lighting has been eliminated through effective design that removes the need for external lighting without adversely affecting the safety and security of the site and its users.

OR alternatively, where the building does have external lighting, one credit can be awarded as follows:

2. All external lighting (except for safety and security lighting) can be automatically switched off between 23:00 and 07:00. The design should be checked for compliance against table 2 in SS-EN 12464-2:2014.

This gives four sets of recommendations:

 a. Limits to the average upward light ratio of the luminaires, to restrict sky glow
 b. Limiting illuminance at the windows of nearby properties for which light trespass might be an issue
 c. Limiting the intensity of each light source in potentially obtrusive directions beyond the site boundaries
 d. Limiting the average luminance of the building, if it is floodlit.

In each case the limiting values depend on the location of the site of the building (for example rural, urban or city centre). A calculation of illuminance (b) or intensity (c) is not required if all luminaires are cut-off types and angled so that light in potentially obtrusive directions is blocked.

3. Illuminated advertisements, where specified comply with:

 3.a The maximum luminance (CD/m²) outlined in Table 59 (please refer to Additional information for a definition of the different zones)
 3.b In Zone E1 (see Table 59) the maximum luminance value shall be zero post-curfew.
4. If safety or security lighting is provided and will be used between 23:00 and 07:00:

4.a Safety and security lighting complies with the lower levels of lighting recommended during these hours in accordance with CIE 150-(2017) and CIE 126-1997, for example by using an automatic switch to reduce the lighting levels at 23:00 or earlier.

Checklists and tables

Table 59–60.

Table 59: Recommendations for maximum luminance (CD/m²)

<table>
<thead>
<tr>
<th>Illuminated Area (m²)</th>
<th>Zone E1</th>
<th>Zone E2</th>
<th>Zone E3</th>
<th>Zone E4</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10.00</td>
<td>100</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>≥ 10.00</td>
<td>N/A</td>
<td>300</td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 60: Environmental lighting zone

<table>
<thead>
<tr>
<th>Zone</th>
<th>Surrounding</th>
<th>Lighting Environment</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Natural</td>
<td>Intrinsically dark</td>
<td>National parks or protected sites</td>
</tr>
<tr>
<td>E2</td>
<td>Rural</td>
<td>Low district brightness</td>
<td>Industrial or residential rural areas</td>
</tr>
<tr>
<td>E3</td>
<td>Suburban</td>
<td>Medium district brightness</td>
<td>Industrial or residential suburbs</td>
</tr>
<tr>
<td>E4</td>
<td>Urban</td>
<td>High district brightness</td>
<td>Town centres and commercial districts</td>
</tr>
</tbody>
</table>

Compliance notes

Ref	Terms	Description
CN1 | Applicable assessment criteria | Both options: All criteria relevant to the building type and function apply.
CN2 | Applicable Assessment criteria – Single and multiple dwellings | Both options: This issue is not applicable.
CN3 | Setting a curfew | The Commission Internationale d’Eclairage (CIE) guidance recommends the setting of a curfew. This will normally include floodlighting, signage and all lighting that is not required for safety or security. Illuminated advertisements may be excluded from this requirement, but will need to comply with different levels of maximum luminance depending on the surrounding and background environment (see criterion 3). Where a different curfew time applies for other reasons (e.g. noise control), consideration should be given to the coordination of the curfews, e.g. allowing sufficient time of operation for the lighting after the conclusion of the activity to facilitate crowd dispersal, particularly where large numbers of spectators are involved.
Ref | Terms | Description
---|---|---
CN3.1 | Non-security lighting considered to be essential between 23:00 and 07:00 | Where non-security lighting is considered to be essential between 23:00 and 07:00, i.e. for buildings which open or operate between these times, the lighting system is able to automatically switch to the lower levels of lighting recommended in CIE 150–(2017) and CIE 126–1997 for lighting during these hours (or provide these lower levels at all times).

CN3.2 | Maximum luminance | When considering the zone in which an advertising sign is, or is intended to be, sited, the contrast with the surrounding or background should be taken into account (e.g. the surrounding could be unlit when viewed from the road or a residential window) and the zone adjusted accordingly. Where an illuminated sign lies on the boundary of two zones or can be observed from another zone, the illumination level used should be that applicable to the most rigorous zone.

Methodology

The following provides guidance on when and how to apply the criteria to the external lighting associated with a building being assessed.

1. Where the assessment is of an individual building on an existing site then only those areas affected by the works, i.e., within the construction zone, need to be assessed. Where the assessment is of a building that forms part of an entire new development, the criteria apply site-wide.
2. If the scope of the assessment covers a new extension only, then only new lighting specified as part of the extended works needs to be assessed.
3. Flush stud lights used for safety purposes in vehicle manoeuvring areas may be excluded from the assessment.
4. Where light fittings are specified to comply with specific security standards and these conflict with the BREEAM-SE criteria, they can be excluded from the assessment of this issue. In these circumstances the assessor must obtain evidence confirming the specific security standards, and that they are applicable to the assessed development.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Design drawings. Relevant section or clauses of the building specification or contract or external lighting design data or calculations. In the case of the external lighting design, the M&E engineer or lighting designer must provide indicative examples of where and how the strategy complies with the assessment criteria.</td>
<td>BREEAM-SE Assessor’s site inspection report and photographic evidence AND EITHER Written confirmation from the project team that the solutions assessed at the design stage have been implemented OR Where the design has changed, evidence is provided for post-construction and as-built details.</td>
</tr>
<tr>
<td>1</td>
<td>Night-time lighting levels report or any other relevant study</td>
<td>BREEAM Assessor’s site inspection report and photographic evidence or as-built drawings. Night-time lighting levels report or any other relevant study.</td>
</tr>
</tbody>
</table>
Additional information

Relevant definitions

Advertisements
Any word, letter, model, sign, placard, board, notice, awning, blind, device or representation, in the nature of, and employed wholly or partly for the purposes of advertisement or announcement. This also includes any hoarding or similar structure used, or designed or adapted for use for the display of advertisements.

Construction zone
For the purpose of this issue the construction zone is defined as the site which is being developed for the BREEAM-SE- assessed building and its external site areas, i.e., the scope of the new works.

Curfew
Curfew is the time after which stricter requirements (for the control of obtrusive light) will apply; often a condition of use of lighting applied by a government controlling authority, usually the local government.

Illuminated advertisements
An advertisement which is designed or adapted to be illuminated by artificial lighting, directly or by reflection.

Lighting zones
The contrast with the surrounding or background, and therefore the lighting environment of the building, changes the perception of luminance. The maximum luminance of the advertisement needs therefore to be adapted depending on the lighting environment.
Pol 05 Reduction of noise pollution
(non-residential, residential institutions and multiple dwellings)

Number of credits available	Minimum standards
1 | No

Aim

To reduce the likelihood of noise arising from fixed installations on the new development affecting nearby noise-sensitive buildings.

Assessment criteria

The following is required to demonstrate compliance:

One credit

1. Where there are, or will be, no noise-sensitive areas or buildings within an 800m radius of the assessed site. An analysis/description of comprehensive city/local planning and/or similar community plans shall be integrated into the assessment if there are no or will not be any noise-sensitive areas or buildings within 800m radius.
 OR
2. A noise impact assessment in compliance with ISO 1996-1 has been carried out and the following noise levels measured/determined:
 2.a Existing background noise levels at the nearest or most exposed noise-sensitive development to the proposed development; or at a location where background conditions can be argued to be similar.
 2.b The rating noise level resulting from the proposed noise-source. This can be based upon reference to similar installations or sites, or determined by calculation.

 The noise impact assessment must be carried out by a suitably qualified acoustic consultant holding a recognised acoustic qualification (see relevant definitions in the additional guidance section).

3. Where the specific noise level of the noise source(s) from the site/building is no greater than +5dB during the day and evening (0600 hrs to 2200 hrs) and +3dB at night (2200 hrs to 0600 hrs) compared to the background noise level, and all criterion in the Environmental Protection Agency report 6538 are met.

Checklists and tables

None.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell and core (non-residential and residential institutions only)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CN1 | Applicable assessment criteria | Shell only: This issue is not applicable.
Shell and core: All criteria relevant to the building type and function apply. |
| **Residential – Partially fitted and fully fitted** |
| CN2 | Applicable assessment criteria – Single dwellings | Both options: This issue is not applicable. |
| CN2.1 | Applicable assessment criteria – Multiple dwellings | Both options: These criteria will be applicable to multiple dwellings with communal HVAC systems only. |
| **General** |
| CN3 | Standard not appropriate or not applicable | Where a suitably qualified acoustician confirms that ISO 1996 is not an appropriate standard of assessment for the proposed building or site, their assessment of the likelihood of complaints from noise impact can be accepted for the purpose of assessing this issue. |
| CN3.1 | Part of a larger mixed-use development | If the development forms part of a larger mixed-use development, where noise sensitive buildings exist or will be developed, then the noise assessment must be carried out to ensure noise from the assessed building will not create a future problem. |
| CN3.2 | Assessed building is defined as noise sensitive | If the assessed building is itself defined as a noise sensitive building then a noise impact assessment must be carried out regardless of the assessed buildings locality to other noise sensitive areas or buildings. |
| CN3.3 | Scope of the noise impact assessment | For the purposes of BREEAM-SE the noise impact assessment relates only to building services plants (heating, ventilation and/or air-conditioning systems). Additional process-related noise and noise from stand-by generating plants does not have to be considered. |
| CN3.4 | Untreated buildings | This assessment issue does not apply to buildings designed to be untreated, i.e. where internal spaces will not be serviced by heating, ventilation or air-conditioning systems and therefore have no noise generating plant. Examples of such building types could include industrial warehouse storage. |

Methodology

None.

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post construction stage</th>
</tr>
</thead>
</table>
| 1 | Design drawings highlighting:
1. All existing and proposed noise-sensitive buildings local to, and within, the site boundary
2. Proposed sources of noise from the new development
3. Distance (m) from these buildings to the assessed development. | As design stage.
BREEAM-SE Assessor’s site inspection report and photographic evidence confirming:
1. All existing and proposed noise-sensitive buildings local to, and within, the site boundary
2. Sources of noise from the new development
3. Distance (m) from these buildings to the assessed development. |
Criteria

<table>
<thead>
<tr>
<th></th>
<th>Interim design stage</th>
<th>Final post construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–3</td>
<td>The acoustician’s report, acoustician’s qualifications and professional status. OR Relevant section or clauses of the building specification or contract requiring a noise assessment by a suitably qualified acoustician in compliance with ISO 1996. OR A letter from the client or design team confirming that they will appoint an acoustician to carry out a noise assessment in compliance with ISO 1996.</td>
<td>The acoustician’s report with measurements based on installed and operating plant.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Noise-sensitive area
Landscapes or buildings where the occupiers are likely to be sensitive to noise created by the new plant installed in the assessed building, including:

1. Residential areas
2. Hospitals, health centres, care homes, doctor’s surgeries etc.
3. Schools, colleges and other teaching establishments
4. Libraries
5. Places of worship
6. Wildlife areas, historic landscapes, parks and gardens
7. Located in an area recognised as having outstanding natural beauty, scientific or ecological interest
8. Any other development that can be considered noise sensitive.

Rating noise level
The specific noise level plus any adjustments for characteristics features of the noise (typically 5dB).

Residual noise
The ambient noise remaining at a given position in a given situation when the specific noise source is suppressed to a degree such that it does not contribute to the ambient noise

Specific noise level
The equivalent continuous A-weighted sound pressure level at the assessment position produced by the specific noise source over a given reference time interval.
Specific noise source

The noise source under investigation for assessing the likelihood of complaints.

Suitably qualified acoustician

An individual achieving the following:

- Holds a degree, PhD or equivalent qualification in acoustics/sound testing.
- Has a minimum of three years relevant experience (within the last five years). Such experience must clearly demonstrate a practical understanding of factors affecting acoustics in relation to construction and the built environment; including, acting in an advisory capacity to provide recommendations for suitable acoustic performance levels and mitigation measures.

Where a suitably qualified acoustician is verifying the acoustic measurements/calculations carried out by another acoustician who does not meet the SQE requirements, they must, as a minimum, have read and reviewed the report and confirm in writing that they have found it to:

- Represent sound industry practice.
- Be appropriate given the building assessed and scope of works proposed.
- Avoid invalid, biased and exaggerated recommendations.

Additionally, written confirmation from the third party verifier that they comply with the definition of a Suitably Qualified Acoustician is required.

Other information

None.
14.0 Innovation

Summary

The innovation category provides opportunities for exemplary performance and innovation to be recognised that are not included within, or go beyond the requirements of the credit criteria. This includes exemplary performance credits, for where the building meets the exemplary performance levels of a particular issue. It also includes innovative products and processes for which an innovation credit can be claimed, where an application has been sent to SGBC, and been approved.

The cost-saving benefits of innovation are fostered and facilitated by helping encourage, drive and publicise accelerated uptake of innovative measures.
Inn 01 Innovation

Number of credits available	Minimum standards
10 | No

Aim
To support innovation within the construction industry through the recognition of sustainability related benefits which are not rewarded by standard BREEAM-SE issues.

Assessment criteria
The following is required to demonstrate compliance:

Up to a maximum of 10 credits are available, with the total BREEAM-SE score capped at 100%, in aggregate from a combination of the following:

Exemplary level of performance in existing BREEAM-SE issues

1. Where the building demonstrates exemplary performance by meeting defined exemplary level performance criteria in one or more of the following BREEAM-SE assessment issues (please refer to the relevant BREEAM-SE issue within this scheme document for details of the exemplary level performance assessment criteria):
 1.a Man 05 Aftercare
 1.b Hea 02 Indoor air quality
 1.c Ene 01 Reduction of energy use
 1.d Ene 04 Low carbon design
 1.e Ene 10 Energy load management
 1.f Tra 03a Alternative modes of transport or Tra 03b Alternative modes of transport
 1.g Wat 01 Water use
 1.h Mat 01 Building climate impact
 1.i Mat 03 Responsible sourcing of construction products
 1.j Mat 07 Hazardous substances
 1.k Wst 01 Construction waste management
 1.l Wst 02 Recycled aggregates
 1.m Wst 05 Adaptation to climate change

Approved innovations

2. One innovation credit can be awarded for each innovation application approved by SGBC, where the building complies with the criteria defined within an approved innovation application form.

Checklists and tables
None.
Compliance notes

<table>
<thead>
<tr>
<th>Ref</th>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Exemplary level of performance</td>
<td>Refer to the criterions within the individual assessment issues that contain exemplary performance levels.</td>
</tr>
</tbody>
</table>

Methodology

Exemplary level of performance in existing BREEAM-SE issues

For information on the methodology for exemplary level credits refer to the Methodology section of the relevant BREEAM-SE issues.

Approved innovations

Innovation applications can be submitted to SGBC by a licensed BREEAM-SE Assessor using the formal approved innovation application form (available at SharePoint for Assessors and AP).

Evidence

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Interim design stage</th>
<th>Final post construction stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>As defined within existing BREEAM-SE issues.</td>
<td>As defined within existing BREEAM-SE issues.</td>
</tr>
<tr>
<td>2</td>
<td>A copy of the approved innovation application form AND A copy of the innovation application report stating the application outcome as ‘approved’ AND Relevant documentary evidence demonstrating specification of the approved innovation.</td>
<td>As per interim design stage AND Relevant documentary evidence confirming that the project has achieved or installed the approved innovation as described and quantified within the approved innovation application form.</td>
</tr>
</tbody>
</table>

Additional information

Relevant definitions

Approved innovation

Any new technology, design, construction, operation, maintenance or demolition method or process that can be shown to improve the sustainability performance of a building and is of demonstrable benefit to the wider industry in a manner that is not covered elsewhere in BREEAM-SE. In addition, the innovation has been approved by SGBC in accordance with its published BREEAM-SE Innovation credit procedures.
Other information

Applying for innovation credits

For more information on BREEAM-SE Innovation credit eligibility criteria, application process, application fees and previously approved innovations, please visit the SharePoint for Assessors and AP for more information.
15.0 Appendices
Appendix A – Scope and education buildings

BREEAM-SE New Construction v6.0 has been tailored specifically for the assessment of the following educational establishments:

1. Preschools, including:
 a. Nursery schools
 b. Children's centres

2. Schools, including:
 a. Primary schools
 b. Secondary schools
 c. All age range schools (including education or teaching buildings at boarding schools)

3. Universities and colleges

4. Higher education or vocational colleges and institutions, including:
 a. Teaching facilities
 b. Learning resource centres
 c. Laboratories, workshops or studios
 d. Student unions
 e. Or a mixture of the above types.

Student residential accommodation

BREEAM-SE New Construction v6.0 can be used to assess boarding school, college or University residential buildings. These types of building are classified as Residential institutions for the purpose of a BREEAM-SE assessment if they have common areas such as kitchens and/or living rooms. Student residential buildings with separate dwellings and no common areas should be assessed as residential. (Laundry rooms can not be seen as common areas).
Appendix B – Scope and residential institutions

BREEAM-SE New Construction v6.0 can be used to assess multi-occupancy residential buildings that are not suitable for assessment as residential dwellings. The BREEAM-SE New Construction v6.0 scheme provides a whole building assessment methodology which can also be applied to buildings which contain private living space, but also communal facilities within the same building, to allow assessment of the whole building.

BREEAM-SE New Construction v6.0 can be used to assess the following types of residential institutions:

1. Hotel, hostel, boarding and guest house
2. Student accommodation (that shares communal facilities, see appendix A)
3. Care homes that do not contain extensive or specialist medical facilities (limited consulting rooms and medical rooms are acceptable)
4. Sheltered housing
5. Other residential buildings that contain a mix of residential accommodation with communal areas such as some military accommodation.
Appendix C – Shell and core project assessments (Non-residential and residential institutions only)

Non-fitted, speculative new buildings (often referred to as shell only or shell and core buildings) can be assessed using the BREEAM-SE New Construction v6.0 scheme.

The BREEAM-SE New Construction v6.0 version can be applied to fully fitted, shell only and shell and core building projects. This section provides guidance to assessors and project teams on the application of BREEAM-SE to shell only and shell and core projects.

A shell only or shell and core building project is defined as one where the developer’s scope of works is the design and construction of the base building only, leaving a range of construction and fit-out works to be completed before the building is able to be occupied. This may include some or all of the following elements: the structure, building envelope, core building systems, including building servicing strategy and installations (such as HVAC) or plant support for installation of such systems and where present, fit-out of common areas.

In these projects, where areas of the development are not fully fitted, performance of the building and compliance with BREEAM-SE is verified based on the developer’s scope of works. This is measured using two standard project type options that in turn define appropriate assessment criteria applicable to that project type. While some projects will differ to some extent from the scope of these standard options, for the purpose of BREEAM-SE, issues not included within the chosen option will be excluded from the assessment, even where they are within the developer’s scope of works. This approach is necessary to ensure clarity, consistency and comparability within the property market.

A fully filterable list of criteria or issues based on each individual project’s scope would not enable comparability between BREEAM-SE ratings, either in terms of performance benchmarking, or promotional or publicity purposes.

It is worth noting that shell only buildings will not be able to fulfil the requirements in EU taxonomy for sustainable finance. The taxonomy requires documented qualities in several areas that are included in interior design work. It is considered that a raw building cannot solve this with an interior design agreement as the tenant or owner in many cases is not known.

Defining the shell and core project type

For the purpose of defining the scope of assessment and BREEAM-SE certification labelling, a non-residential new construction project that is not fully fitted out can be categorised in to one of the following types:

- Shell only assessment and certification.
- Shell and core assessment and certification.

Shell only assessment

This assessment and certification option is available where the developer’s scope of works covers new build works to the fabric, substructure and superstructure of the building only, including: External walls, windows, doors (external), roof, core internal walls, structural floors Hard and soft landscaping areas (where present and within the scope of works).
Shell and core assessment

This option is available where the developer’s scope of works covers shell works, as described in option 1, plus core building services. Core building services relates to the installation of central or communal transport systems, water systems, fit-out of common areas, central mechanical and electrical systems, including HVAC, but without local fitting of systems within tenant areas. The systems will typically be centralised with capped-off distribution to each tenanted area (for future connection as part of a tenant’s fit-out works).

The shell-only and shell and core assessment options are available for all building types, apart from residential individual dwellings and apartment blocks, refer to Appendix D – Applicability of BREEAM-SE New Construction to single and multiple dwellings, partially and fully fitted for a more detailed description of residential assessment options.

Assessing new-build shell and core projects

In the main, the assessment process and application of the majority of the BREEAM-SE assessment issues will be unaffected by the scope of new build shell only or shell and core works. This is because most of the BREEAM-SE criteria are concerned with impacts, processes and management procedures that occur with any new build development, regardless of whether it is a shell and core or fully fitted project. However, several BREEAM-SE issues and criteria are tailored for the assessment of fitted out buildings, such as acoustic performance. Therefore, additional guidance is given within the assessment issues in the form of a compliance note. These shell and core compliance notes confirm whether the assessment issue applies to a shell only or shell and core project and, where it does apply, how to assess it for the options or project types defined above.

Shell and core building assessments and minimum BREEAM-SE standards

All minimum BREEAM-SE standards remain applicable to shell and core building assessments for the developer’s scope of works. The only exception is minimum standards for BREEAM-SE issues, credits or criteria which are not assessed in a shell only or shell and core project (confirmed by the shell and core compliance note in each relevant issue).

For issues reliant upon compliance of tenant areas/fit-out items, the minimum standards are still applied to those areas and compliance can be demonstrated via a green fit-out agreement.

Partly fully fitted assessments

For assessments where 95% or more of the total area (BOA) is fully fitted, the general rule is that the whole building can be assessed as fully fitted. The area of the building that is not fully fitted must still be fitted to fulfil the definition of “shell and core assessments”. In addition, the following areas and functions must be fitted or installed:

- All common areas, such as reception, stairs, hallways, large meeting rooms, canteen, changing rooms etc.
- All sanitary equipment. This does not include water-related installations for kitchenettes.
- Technical systems, such as lighting, ventilation, sensors, etc. For the shell and core areas, this is installed according to a preliminary layout and completed as far as is technically and economically justifiable.
If the above conditions are met, the project must send in a technical query to SGBC to get confirmation that the building can be certified as fully fitted. The project will then receive a certificate as a fully fitted building. Areas that are shell only cannot be part of a fully fitted assessment.

Green Fit-Out agreement

A formal contractually binding agreement between a building developer or owner and tenants. As such, a green fit-out agreement (or ‘green’ clauses or sections in a lease agreement) can be used as evidence for demonstrating compliance with the relevant BREEAM-SE issue criteria at the interim design and final postconstruction stages of assessment. The agreement should make specific reference to the specification requirements or levels claimed, and as defined by BREEAM-SE in this technical manual, where credits are awarded.

BREEAM-SE aims to encourage a mutually beneficial relationship between the shell and core developer or owner of a building and its future tenants/users so that the fully fitted operational building achieves performance against the highest possible environmental standards. In order to achieve this, BREEAM-SE encourages and rewards the use of formal legally binding green fit-out agreements between a developer or owner and tenant. Where a legally binding green fit-out agreement is provided as evidence and it commits the tenant’s fit-out to meet the criteria of this BREEAM-SE issue, credits are available to be awarded.
Appendix D – Single and multiple dwellings, partially and fully fitted

Due to the diverse way homes are built and sold, BREEAM-SE New Construction v6.0 offers four different classification routes for residential assessments.

This section provides guidance to assessors and project teams on the application of BREEAM-SE for residential developments.

To carry out an assessment the assessor and project team must first define the project as either a single or multiple dwelling, then state whether it will be ‘partially’ or ‘fully’ fitted out. This must be decided upon at the beginning of the assessment process, within the Scoring and Reporting tool.

Single or multiple dwellings

Definition of a single dwelling

A single dwelling is a permanent residential building, detached from any other building.

Otherwise referred to as a ‘home’ or ‘family unit’, the ‘single dwelling’ is intended to be occupied by one single household or family. Single dwellings must have no common areas or shared services with their surrounding dwellings.

Single dwellings are typically built on plots of land, greater in scale than the ground floor area, offering a privately owned, outdoor space. However, this may not always be the case for dwellings constructed on densely packed plots of land such as those built within towns or cities. For single dwellings that join onto other dwellings, as long as the other dwellings are not being assessed, then the ‘single dwelling’ criteria applies.

Allowances can be made for dwellings with additional extensions or suites intended for extended family members, without changing the description from ‘single dwelling’.

Definition of multiple dwellings

Multiple dwellings are any number of permanent residential buildings greater than one. They must be located on the same plot of land and can either be joined together within the same building envelope or separated.

For example, a single, building envelope could consist of an apartment block or a row of terraces. Alternatively, it could be a group of ‘single dwellings’ built on the same plot of land.

Partially and fully fitted dwellings

The intention of the partial and fully fitted criteria is to recognise the need for greater flexibility during the ‘Fit-out’ stage in response to the Turn-key property market. Turn-key properties are new homes sold on the open market as complete and intended for immediate occupation by the new homeowner.
Definition of Partially Fitted dwellings

These are new Turn-key homes intended to be occupied by the new homeowner where due to local building practices and cultural aspects, even though the property is considered ‘complete’ at the point of sale, the new homeowner is still required to fit-out their new property with specific fixtures and fittings.

While BREEAM-SE Residential aspires to remain flexible with regards to the specification of different fixtures and fittings by the new homeowner; for the new dwelling to be certified as a BREEAM-SE partially fitted home, particular elements must always be present during the scope of works regardless of building practice or cultural differences.

This assessment and certification option is available where the developer’s scope of works covers new build works to the fabric, sub and superstructure of the building, plus the necessary core, central and localised systems for occupiers to live comfortably within each and every dwelling. Depending on climate and design features of the new home, those elements are:

Mandatory features of a partially fitted dwelling:

- Roof; external walls; internal and separating walls and structural floors; windows and external doors (for each dwelling)
- Potable water supply
- Plumbing and drainage
- Mechanical and electrical systems including:
 - Light fixtures and fittings.
 - Heating, cooling and ventilation systems.

Mandatory features of a partially fitted dwelling (if present)

- Fit-out of communal areas
- Installation of central or communal transport systems
- Hard and soft landscaping areas.

For these assessments, the scope of works being undertaken must be specified clearly and provided for the accurate certification of the project.

Definition of Fully Fitted dwellings

A fully fitted dwelling is where, in addition to the core, central and localised systems, additional fixtures and fittings have also been provided to mitigate environmental impacts while the dwelling is in use throughout its lifespan.

- Interior finishes such as floor, wall and door finishes, and furniture (e.g. kitchens and bathrooms)
- Hot and cold potable and non-potable water fittings
- Internal fittings such as recycling bins and white goods
- Monitoring equipment such as energy meters and display devices.
Partially fitted and fully fitted dwelling assessments and minimum BREEAM-SE standards

All minimum BREEAM-SE standards remain applicable to partially fitted assessments for the developer’s scope of works. The only exceptions are:

Minimum standards for BREEAM-SE issues, credits or criteria which are not assessed in a partially fitted project (confirmed by the residential – partially and fully fitted compliance notes in each issue)

Wat 01 Water use, where the minimum standard can be excluded if water fittings are not going to be installed on behalf of the new homeowner or occupant.
Appendix E – Part new-build, part refurbishment projects

Guidance for part-new build, part refurbishment projects

For developments that are a mixture of new-build and refurbished areas, the choice of scheme depends on the scope of the new-build and refurbishment works. The applicable scheme depends on the percentage share of the original floor area that is refurbishment or fit-out and new-build.

The project has 4 options for their certification

1. The assessment uses BREEAM-SE New Construction without adaptations for the whole project, i.e. both for the new building and the rehabilitation project.
2. The assessment uses BREEAM-SE New Construction for the new building. The refurbishment is omitted from the certification scope.
3. The assessment is divided in two. The new building uses BREEAM-SE New Construction. The refurbishment uses BREEAM-SE bespoke. The assessment achieves two certificates, one for the new building and one for the refurbishment.
4. If the project is mainly refurbishment, but with some new components, BREEAM-SE bespoke can be used for both the new building and the refurbishment if the conditions described in table 61 below are met. The assessment achieves one certificate covering the entire project.

Table 61: Distribution between the original building and the new building when alternative 4 is used.

<table>
<thead>
<tr>
<th>Distribution 1</th>
<th>Distribution 2</th>
<th>Distribution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original building</td>
<td>< 500 m²</td>
<td>≥ 500 m² and < 2500 m²</td>
</tr>
<tr>
<td>New building/extension</td>
<td>≤ 40 % of the original building area</td>
<td>≤ 30 % of the original building area</td>
</tr>
</tbody>
</table>
16.0 Checklists
Checklist A1

See Man 03 Responsible construction practices.

1 Safe and adequate access

This section is intended to demonstrate that the constructor operates the site in a manner that guarantees safe and appropriate access to, around and on the site. The following items demonstrate compliance with this section:

Table 62: Checklist A1 – Safe and adequate access requirements

<table>
<thead>
<tr>
<th>REF</th>
<th>Criteria</th>
<th>Y</th>
<th>Evidence or reference required</th>
<th>Validation and justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Appropriate and safe access to the site is provided. This must include as a minimum:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provision of parking for cars as well as for bicycles (suitably secure) on or near to the site OR A public transport node with an average frequency under 30 minutes within 500m OR a dedicated transport service to a major public transport node provided by the contractor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Good lighting AND adequate barriers AND Uniform surfaces, i.e. no trip hazards outside the site boundary All accesses to be clean and mud free</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hoarding or scaffolding, which forms part of, or is external to the site boundary, to be well lit at night AND scaffold netting is in place and well maintained. Scaffolding should be designed to prevent unauthorized persons from reaching the scaffolding outside the site boundaries.</td>
<td>X</td>
<td>See copy of the parking plan and check transport and dedicated service timetables and view other facilities are on site.</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Appropriate and safe access to the site office and facilities is provided. This must include as a minimum:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Footpaths marked with ramps and signs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pathways wide enough for wheelchairs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Accessibility of all areas by visually- or hearing-impaired visitors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All site hazards advertised at the site entrance</td>
<td>X</td>
<td>View on site and check that the list of hazards is complete.</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Site entrances and exits are clearly marked for visitors and delivery drivers to see.</td>
<td>X</td>
<td>View on site.</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Site reception is clearly signposted OR all visitors are escorted to the reception.</td>
<td>X</td>
<td>Check on arrival for the signs OR see a copy of the induction procedure.</td>
<td></td>
</tr>
</tbody>
</table>
2 Good Neighbour

This section is intended to demonstrate that the constructor operates the site in a manner that is considerate to the surrounding neighbours. The following items demonstrate compliance with this section:

Table 63: Checklist A1 – Good neighbour requirements

<table>
<thead>
<tr>
<th>REF</th>
<th>Criteria</th>
<th>Y</th>
<th>Evidence or reference required</th>
<th>Validation and justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Introductory letters have been or will be sent to all neighbours AND there is a commitment to write and thank neighbours at the end of the contract for their patience AND provide a feedback form.</td>
<td>Y</td>
<td>See copies of letters with a list of addresses. A copy of this commitment should be provided or a copy of a standard letter that is always sent at the end of a project. A copy of the feedback form must be provided alongside a procedure to monitor the results and implement changes for future work.</td>
<td>Validation and justification</td>
</tr>
<tr>
<td>b</td>
<td>Where there are minority communities speaking a different language in the area or working on site, notices are printed in the common local language.</td>
<td>Y</td>
<td>Where minority culture community is present on- or off-site, check for signs in the community's language.</td>
<td>Validation and justification</td>
</tr>
<tr>
<td>c</td>
<td>All road signs or names can be seen OR when a road sign or name is obstructed, a replacement has been erected. Any demands from local authorities concerning working on or near roads must be considered and relevant training for staff must be undertaken.</td>
<td>Y</td>
<td>View on site.</td>
<td>Validation and justification</td>
</tr>
<tr>
<td>d</td>
<td>Where a site is in an area with severe congestion it has a delivery point remote from the site; deliveries are then made in smaller vehicles and timed to cause the least inconvenience.</td>
<td>Y</td>
<td>View procedures on site.</td>
<td>Validation and justification</td>
</tr>
<tr>
<td>REF</td>
<td>Criteria</td>
<td>Y</td>
<td>Evidence or reference required</td>
<td>Validation and justification</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| b | Site hours and noisy work restrictions are appropriate to the area, in particular when the site is located near:
- Houses
- Schools
- Hospitals
- Industrial units
- Major public transport nodes
- City centres
- Shopping facilities | Y | Copy of statement of intent, policy, agreement etc. to be provided. | |
| c | The site boundary (which includes all areas affected by the works) is clearly and safely marked and appropriate to the environment:
- The colour of the hoarding has been considered in terms of the surrounding environment.
- Pedestrians have a suitable, safe and protected passage around the site boundary.
- There are well lit warning signs for the benefit of the pedestrian and road user.
- The site’s surroundings are seen by the public as being tidy and clean. | Y | Ask the site manager if any thought was given to the hoarding and the location of the site.
Is the hoarding clearly and safely marked, clean, neat and well maintained?
Ensure that there are no complaints about the site being untidy or that if there were, this was quickly rectified and not repeated. | |
| d | There is a complaint book available
AND
evidence that complaints are being dealt with immediately. | Y | Inspect the complaints book and check responses for timeliness. | |
| e | Local people are appropriately informed by the use of a notice board:
- Of the site progress
- Of the company contact details (telephone number or website or email address).
- A digital notice board on a public website is sufficient if a sign at the site informs who the constructing company is and if the sign includes the URL to the website. | Y | View on site. | |
| f | Light is shielded from the neighbours. | Y | Copy of the temporary works indicating light shielding, or the site manager must demonstrate how the light shielding works or is not applicable. | |
| g | There is a volume restriction on radio use or there is a radio ban in place. | Y | Check if a restriction or ban is in place and how this is enforced. | |
| h | Measures are taken to reduce noise, dust and pollutant emissions during construction or maintenance works. | Y | View on site. | |
3 Environmentally Aware

This section is intended to demonstrate that the constructor has considered the impact of the site on the environment and has implemented measures to mitigate this impact. The following items demonstrate compliance with this section:

Table 64: Checklist A1 – Environmentally aware requirements

<table>
<thead>
<tr>
<th>REF</th>
<th>Criteria</th>
<th>Y</th>
<th>Evidence or reference required</th>
<th>Validation and justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>There are restrictions on the effects of light pollution and all lights are directional and non-polluting. If there is a site-specific environmental policy which sets restrictions on lighting, this point can be awarded.</td>
<td></td>
<td>View on site.</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Energy saving measures are implemented on site. Examples of this include:</td>
<td></td>
<td>View on site.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low energy lighting Switching off equipment when not in use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Installing thermostats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Installing timers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Choosing energy efficient equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If there is a site-specific environmental policy which defines energy saving measures, this point can be awarded.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>An impact minimisation strategy review is in place for the site. The review should consider the impact of the site in environmental terms and how any adverse effects are being minimised, e.g. protection of ecological features, pollution control.</td>
<td></td>
<td>View impact minimisation strategy.</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Water saving measures are implemented on site and monitored. If there is a site-specific environmental policy which indicates how water saving measures are managed and monitored on site, this point can be awarded.</td>
<td></td>
<td>View procedures on site.</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Alternative energy sources have been considered.</td>
<td></td>
<td>View on site.</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Fuel oil spillage equipment is available.</td>
<td></td>
<td>View on site.</td>
<td>Ensure the spillage equipment is located where spillages may occur to ensure a rapid response time.</td>
</tr>
<tr>
<td>g</td>
<td>Sumps are provided in cases of heavy water run-off. If there is a site-specific environmental policy which indicates how heavy water run-off will be minimised and dealt with on site, this point can be awarded.</td>
<td></td>
<td>View on site.</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Materials and equipment are tidily stacked and protected and covered where necessary AND there is adequate space for new materials to be stored in secured covered areas to avoid damage, theft and to protect from weather.</td>
<td></td>
<td>View on site. Ensure that where the space has been provided, it is being used correctly.</td>
<td></td>
</tr>
</tbody>
</table>
4 Safe and considerate working environment

This section is intended to demonstrate that the constructor is operating the site in a clean and safe manner in order to ensure the wellbeing of its workers and to minimise the risk to their health and safety. The following items demonstrate compliance with this section:

Table 65: Checklist A1 – Safe and considerate working environment requirements

<table>
<thead>
<tr>
<th>REF</th>
<th>Criteria</th>
<th>Y</th>
<th>Evidence or reference required</th>
<th>Validation and justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Risks related to preserving water quality and avoiding water stress are addressed with the aim of achieving good water status and good ecological potential as defined in Directive 2000/60/EC (Vattendirektivet). Where an Environmental Impact Assessment is carried out no additional assessment of impact on water is required, provided the risks identified have been addressed.</td>
<td>Y</td>
<td>View on site</td>
<td></td>
</tr>
</tbody>
</table>
| a | Adequate facilities are provided on site for workers and visitors. These must include as a minimum:
• Separate male, female and disabled toilets
• Working usable showers AND suitable changing areas
• Lockers in the changing room
• Suitable and safe accommodation (where provided).
• Smoking area (if relevant) | Y | View on site | |
| b | Site facilities are well maintained and clean. This must cover as a minimum:
• Areas around the canteen, offices and skips
• Site welfare facilities (including toilets and changing areas)
• Dedicated smoking area. | Y | View on site | |
| c | Private or visually-impacting areas are screened. These must include as a minimum:
• Areas around the canteen, offices and skips, where necessary
• Toilets
• Dedicated smoking area. | Y | View on site | |
<p>| d | Clean Personal Protective Equipment (PPE) is available for use by visitors. | | Check company policy and procedure and if it is being implemented on site. | |</p>
<table>
<thead>
<tr>
<th>REF</th>
<th>Criteria</th>
<th>Y</th>
<th>Evidence or reference required</th>
<th>Validation and justification</th>
</tr>
</thead>
</table>
| e | Health and Safety procedures are in place for the following issues:
• Appropriate training of all staff including non-native operatives to understand health and safety (H&S) best practices and information displayed on site
• Operatives’ exposure to the sun
• Operatives’ identification: all operatives to be provided with a photo identification clip card
• Reporting of all incidents (minor and serious) and near misses
• Ensuring that an appropriate number of first aiders and first aid equipment are available for the site. | | Check company policy and procedures and how these are enforced.
Check first aid book, in particular for minor accidents. Check the first aiders list and their qualifications (must be less than 3 years old).
Check that each first aider has a box with basic equipment and that they have access to more equipment if necessary, and that they know where to find it.
Check the work environment plan for guidelines regarding operatives’ exposure to the sun. | |
| f | There is posted material indicating the nearest police station and hospital (with Accident & Emergency facilities) in the following areas as a minimum:
• Site reception
• Site canteen
• Main site office. | | Spot check managers, operatives, reception staff to check they know this information or at least where they would find it.
Check induction talk. | |
| g | An inspection has been carried out by a Health and Safety inspector or equivalent. | View on site. The Assessor determines if the inspector is suitable or not. | |
| h | Emergency escape routes are well identified and there is a clear emergency evacuation procedure AND drills are carried out regularly. | View on site. Written proof of the fire drill procedure. | |

Signed by:
Checklist A2

See Man 04 Commissioning and handover.

Table 66: Checklist A2 – Home user guide requirements

<table>
<thead>
<tr>
<th>Checklist A2 - Home user guide requirements</th>
<th>YES/NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1 – Operational issues</td>
<td></td>
</tr>
<tr>
<td>a. Environmental strategy or design and features</td>
<td></td>
</tr>
<tr>
<td>1. Details of any specific environmental or energy design strategy or features including an overview of the reasons for their use (e.g. environmental and economic savings and restrictions on making alterations) and how they should best be operated. Strategies or features could include passive solar design, super insulation, energy efficient timber windows, heat recovery systems, solar hot water systems, photovoltaics, passive vents or the use of certified timber or SuDS within the boundary of individual properties.</td>
<td></td>
</tr>
<tr>
<td>b. Energy</td>
<td></td>
</tr>
<tr>
<td>1. Sufficient information about the building, the fixed building services and their maintenance requirements, for example:</td>
<td></td>
</tr>
<tr>
<td>a. Provide a suitable set of operating and maintenance instructions aimed at achieving economy in the use of fuel and power in a way that occupiers can understand. The instructions should be directly related to the particular systems installed in the dwelling and account for the different demands likely to be placed on the system during the year.</td>
<td></td>
</tr>
<tr>
<td>b. Details of any renewable systems and how they operate.</td>
<td></td>
</tr>
<tr>
<td>c. Details of low energy light fittings, their use and their benefits, e.g. energy and cost savings compared to traditional light fittings.</td>
<td></td>
</tr>
<tr>
<td>d. Details of any energy labelling scheme for domestic equipment or appliances.</td>
<td></td>
</tr>
<tr>
<td>e. General information on energy efficiency.</td>
<td></td>
</tr>
<tr>
<td>f. Details on how to use and maintain an energy meter where one is installed or provided.</td>
<td></td>
</tr>
<tr>
<td>c. Water use</td>
<td></td>
</tr>
<tr>
<td>1. Details of water saving measures and tips</td>
<td></td>
</tr>
<tr>
<td>2. External water use and efficiency, e.g. the use of water butts or other types of rainwater recycling systems.</td>
<td></td>
</tr>
<tr>
<td>d. Recycling and waste</td>
<td></td>
</tr>
<tr>
<td>1. Information about a local authority or government collection scheme (if applicable).</td>
<td></td>
</tr>
<tr>
<td>2. If the home is not covered by a local collection scheme, details and location of communal recycling bins, skips or facilities.</td>
<td></td>
</tr>
<tr>
<td>3. Information on the location and use of any recycling and compost bins.</td>
<td></td>
</tr>
<tr>
<td>4. Information on where residents can obtain information or guidance on recycling and sustainable waste disposal, e.g. local authority or private organisation.</td>
<td></td>
</tr>
<tr>
<td>e. Links, references and further information</td>
<td></td>
</tr>
<tr>
<td>1. References or links to other information including websites, publications and organisations providing information on how to run the home efficiently and in the best environmentally sound way. As a minimum, this should include links to:</td>
<td></td>
</tr>
<tr>
<td>a. Further good practice guidance on how to save energy</td>
<td></td>
</tr>
<tr>
<td>b. The company responsible for the construction of the property</td>
<td></td>
</tr>
<tr>
<td>c. The company responsible for the management of the home (where applicable).</td>
<td></td>
</tr>
<tr>
<td>2. In all instances both an address or telephone contact number and a URL should be provided.</td>
<td></td>
</tr>
<tr>
<td>Checklist A2 - Home user guide requirements</td>
<td>YES/NO</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>f. Provision of information in alternative formats</td>
<td>1. Include details of the procedure for obtaining a copy of the guide in alternative formats, including alternative languages, Braille, large print or audio cassette or CD. This should include the contact details of the person or organisation responsible for producing the guide.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Checklist A2 - Home user guide requirements</th>
<th>YES/NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 2 – Site and surroundings</td>
<td></td>
</tr>
<tr>
<td>a. Recycling and waste</td>
<td>1. Information on what to do with waste not covered by a standard weekly local authority collection scheme, for example fridges or freezers, computer equipment, batteries and other potentially hazardous equipment. In some areas the local authority will collect these items. If this is the case, details and information of such a collection should be provided.</td>
</tr>
<tr>
<td></td>
<td>2. Information and location of local recycling facilities and waste tips.</td>
</tr>
<tr>
<td>b. Sustainable (urban) drainage systems (SuDS)</td>
<td>1. Details of SuDS within the site boundary including an overview of the reasons and benefits behind their use (e.g. prevention of localised flooding) and advice on maintenance and operation.</td>
</tr>
<tr>
<td>c. Public transport</td>
<td>1. Details of local public transport facilities including maps and timetables and the location of nearby bus stops, trains, or subways or metro stations.</td>
</tr>
<tr>
<td></td>
<td>2. Details of cycle storage and cycle paths in the area including, if available, cycle path network maps for the whole town or local area.</td>
</tr>
<tr>
<td></td>
<td>3. Details of car parking and information on available park and ride schemes, car sharing schemes or carpools or car hire in the area.</td>
</tr>
<tr>
<td></td>
<td>4. Details on how to get to local amenities in the area by public transport or cycling.</td>
</tr>
<tr>
<td>d. Local amenities</td>
<td>1. Details of the location of food shops, post boxes, postal facilities, bank or cash points, pharmacies, schools, medical centres, leisure centres, community centres, places of worship, public houses, children’s play areas, outdoor open access public areas.</td>
</tr>
<tr>
<td></td>
<td>2. Other local amenities such as places of interest or cultural value, areas of beauty, wildlife, conservation, allotments etc.</td>
</tr>
<tr>
<td>e. Responsible purchasing</td>
<td>1. Include information about the purchasing of:</td>
</tr>
<tr>
<td></td>
<td>a. Energy and water efficient domestic equipment or appliances</td>
</tr>
<tr>
<td></td>
<td>b. Electrical equipment, including light fittings and bulbs</td>
</tr>
<tr>
<td></td>
<td>c. Timber products from sustainable sources</td>
</tr>
<tr>
<td></td>
<td>d. Organic food procurement or food growing or local produce or local food provision, e.g., farmers markets, organic box schemes etc.</td>
</tr>
<tr>
<td>f. Emergency information</td>
<td>1. Contact details for emergency services including:</td>
</tr>
<tr>
<td></td>
<td>a. Location of local minor injuries clinics or hospitals or similar facilities</td>
</tr>
<tr>
<td></td>
<td>b. Location of nearest police and fire station.</td>
</tr>
<tr>
<td>g. Links, references and further information</td>
<td>1. References or links to other information including websites, publications and organisations providing information on how to reduce the environmental impact in terms of transport, the use of local amenities, responsible purchasing etc. Such references or links may include links to:</td>
</tr>
<tr>
<td></td>
<td>a. The local authority (including information about recycling and waste tips)</td>
</tr>
<tr>
<td></td>
<td>b. Local transport providers (e.g., bus or train companies)</td>
</tr>
<tr>
<td></td>
<td>c. Local amenities.</td>
</tr>
</tbody>
</table>

In all instances both an address or telephone contact number and a web link should be provided.
Checklist A2 - Home user guide requirements

Developer Confirmation

By entering a 'YES' against the criteria above, I confirm that all dwellings of this specification type on the (ENTER SITE NAME) site meet the stated criteria.

<table>
<thead>
<tr>
<th>Signature:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Print Name:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checklist A3

See Hea 06 Accessibility.

Table 67: Checklist A3 – Access strategy checklist

<table>
<thead>
<tr>
<th>Ref</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approach</td>
</tr>
<tr>
<td></td>
<td>The strategy sets out the approach that the applicant has adopted towards access, with particular reference to the inclusion of disabled people, people of different age groups, genders, ethnicity, stamina and fitness levels, and parents with children. This should include how relevant local, regional and national development or planning policies have been taken account of. The strategy indicates how the approach outlined within will inform decisions taken throughout the development process.</td>
</tr>
<tr>
<td>2</td>
<td>Consultation</td>
</tr>
<tr>
<td></td>
<td>The strategy provides information on the results of any consultation carried out (or to be carried out) on access issues with (depending on the scale of development): 1. Relevant parties and bodies (see Compliance notes under Man 01) 2. Technical specialists, e.g. access, highway, crime prevention and urban design advice.</td>
</tr>
<tr>
<td>3</td>
<td>How access will be achieved</td>
</tr>
<tr>
<td></td>
<td>The strategy explains how: 1. The layout provides practical access 2. Surrounding roads, footpaths and sight lines will be linked 3. Lighting, views, signs and desire lines are used to improve access. Diagrams are produced to show: 1. How people can move to and through the place 2. Priority access arrangements for different users, e.g. pedestrians, cyclists and motorised vehicles. The strategy explains how: 1. Internal access will be designed, provided and used. For speculative buildings the strategy should demonstrate options for proposed layouts and detail the flexibility of the design to take into account the speculative nature of the development. The strategy explains how: 1. Visibility of entrances and entrance areas and facilities (e.g. toilets, conference rooms etc.) will be addressed in the design 2. Levels and gradients change within public spaces, including pavements and dropped kerbs, bus stops, parking spaces (including disabled parking spaces) 3. Symbols and pictures will be used (where appropriate) to help people navigate. The strategy shows public and private spaces and explains how the design has helped make these areas safe. The strategy shows that disabled people will not be segregated but will be able to move up and down in a building and use the same entrances, corridors and rooms as everyone else without detours. The strategy explains how access for the emergency services will be provided. This may include areas for congregation in the event of an emergency which should include provision for disabled refuge points.</td>
</tr>
</tbody>
</table>
Checklist A7

See LE 01 Site selection.

Table 68: Checklist A7-1 – Likelihood of significant contamination on site

<table>
<thead>
<tr>
<th>Item No</th>
<th>Questions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is the site registered by the local authority or any other appropriate organisation as contaminated?</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Does the site have any historical or previous uses that may have caused the site to become contaminated (see LE 01 Site selection: Additional information and also Checklist A7-3 below)? Where this cannot be answered because of a lack of information please tick ‘yes’, i.e. assume the worst-case scenario.</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Is the site within 250m of landfill (e.g. active, not active, capped)?</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Is the site known or suspected to be contaminated (e.g. have studies already been undertaken on the site)?</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Does the local authority or other appropriate organisation possess any information on the site that may give suspicions of contamination? Where this cannot be answered because of a lack of information please tick ‘yes’, i.e. assume the worst-case scenario.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 69: Checklist A7-2 – Scope of site investigation, risk assessment and appraisal report

<table>
<thead>
<tr>
<th>Item No</th>
<th>Questions</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Purpose and aim of study.</td>
<td>Yes</td>
</tr>
<tr>
<td>1.2</td>
<td>Site location and layout plans.</td>
<td>Yes</td>
</tr>
<tr>
<td>1.3</td>
<td>Appraisal of site history.</td>
<td>Yes</td>
</tr>
<tr>
<td>Item No</td>
<td>Questions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
</tbody>
</table>
| 1.4 | Assessment of environmental setting, covering:
• Geology, hydrogeology, hydrology
• Industrial activity
• Location of controlled waters (canals, estuaries, lakes, ponds, rivers, springs, aquifers).
• Pollution incidents, landfill sites within 250m etc. |
| 1.5 | Assessment of current or proposed site use and surrounding land uses. |
| 1.6 | Review of any previous site contamination studies (desk-based or intrusive) or remediation works. |
| 1.7 | Preliminary (qualitative) assessment of risks:
• Appraisal of potential contaminant sources, pathways and receptors
• Conceptual site model
• Identification of significant contamination. |
| 1.8 | Recommendations for intrusive contamination investigation if necessary. |

Section 2: Site investigation report

Instruction: The report must investigate each aspect highlighted by the desk study, this comprises exploratory holes constructed using the most appropriate method for the site to investigate the local subsurface strata (see ISO 10381-5:2005 for further information). The report must cover the following as a minimum:

| 2.1 | Site investigation methodology:
• Methods of investigation
• Plan showing exploration locations
• Justification of exploration locations
• Sampling and analytical strategies. |
| 2.2 | Results and findings of investigation:
• Ground conditions (soil and groundwater)
• Discussion of soil, groundwater and surface water contamination. |
| 2.3 | Risk assessment:
• As a minimum, based on contaminant pathway receptor model
• Takes account of severity of consequences and likelihood of occurrence. |
| 2.4 | Where applicable, recommendations for remediation based on:
• Proposed site use
• Risk assessment findings
• Technical and financial appraisal. |

Section 3: Options for remediation

Instruction: If remediation is deemed necessary following the site investigation, then a site-specific remediation methodology must be produced and followed. Consultation with the regulatory authorities may be required to ensure satisfactory design and implementation of the remediation programme. The report must cover the following as a minimum:

| 3.1 | Detailed outline of the works to be carried out:
• Type, form and scale of contamination to be remediated
• Remediation methodology
• Site plans or drawings
• Phasing of works and approximate timescales. |
| 3.2 | Consents, agreements and licences (discharge consents, waste management licence etc.). |
3.3 Site management procedures to protect site neighbours, environment and amenity during works:
 • Health and safety procedures
 • Dust, noise and odour controls
 • Control of surface run-off.

3.4 Details of how the works will be validated to ensure the remediation objectives have been met:
 • Sampling strategy
 • Use of on-site observations, visual or olfactory evidence
 • Chemical analysis
 • Proposed clean-up standards (i.e. contaminant concentrations).

Table 70: Checklist A7-3 – Previous site uses which can cause significant contamination

<table>
<thead>
<tr>
<th>Polluting activity</th>
<th>Y/N</th>
<th>Polluting activity</th>
<th>Y/N</th>
<th>Polluting activity</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural uses</td>
<td></td>
<td>Manufacturing of asbestos</td>
<td></td>
<td>Timber and timber products industry</td>
<td></td>
</tr>
<tr>
<td>Chemical works</td>
<td></td>
<td>Metal processing</td>
<td></td>
<td>Use as a scrap metal store</td>
<td></td>
</tr>
<tr>
<td>Energy industry – Power stations</td>
<td></td>
<td>Paper, pulp and printing industries</td>
<td></td>
<td>Waste disposal</td>
<td></td>
</tr>
<tr>
<td>Engineering and manufacturing processes</td>
<td></td>
<td>Petrol stations</td>
<td></td>
<td>Waste management facility</td>
<td></td>
</tr>
<tr>
<td>Extractive industry and mineral processing</td>
<td></td>
<td>Premises for dry cleaning</td>
<td></td>
<td>Wood preserving yards</td>
<td></td>
</tr>
<tr>
<td>Food processing industry</td>
<td></td>
<td>Production of metal</td>
<td></td>
<td>Works non-specified</td>
<td></td>
</tr>
<tr>
<td>Gas works</td>
<td></td>
<td>Production of non- metals and their products</td>
<td></td>
<td>Demolition of buildings for any of the above uses</td>
<td></td>
</tr>
<tr>
<td>Glass making and ceramics</td>
<td></td>
<td>Railway land</td>
<td></td>
<td>Mining</td>
<td></td>
</tr>
<tr>
<td>Hospitals and cemeteries</td>
<td></td>
<td>Road vehicle maintenance</td>
<td></td>
<td>Waste management</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
<td>Rubber industry</td>
<td></td>
<td>Mills</td>
<td></td>
</tr>
<tr>
<td>Laboratories</td>
<td></td>
<td>Sewerage treatment</td>
<td></td>
<td>Oil refineries</td>
<td></td>
</tr>
<tr>
<td>Landfill</td>
<td></td>
<td>Textile industry</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>